Skip to main content

Advertisement

Log in

Reverse Cardiac Remodeling and ARNI Therapy

  • CLINICAL HEART 4 FAILURE (T.E. MEYER, SECTION EDITOR)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review reverse cardiac remodeling and guideline-directed medical and device therapy (GDMT) within the context of recent data on combined angiotensin receptor/neprilysin inhibitor (ARNI) therapy.

Recent Findings

Preliminary data suggested that ARNI therapy led to significant reversal of deleterious cardiac remodeling. More definitive data regarding impact of ARNI therapy on remodeling parameters are now available from two prospective trials, PROVE-HF (Prospective Study of Biomarkers, Symptom Improvement, and Ventricular Remodeling During Sacubitril/Valsartan Therapy for Heart Failure) and EVALUATE-HF (Study of Effects of Sacubitril/Valsartan vs. Enalapril on Aortic Stiffness in Patients With Mild to Moderate HF With Reduced Ejection Fraction). Both studies demonstrated marked improvements in biomarker and echocardiographic parameters of reverse cardiac remodeling in patients with heart failure with reduced ejection fraction (HFrEF).

Summary

Much of the observed clinical benefit of sacubitril/valsartan therapy in patients with HFrEF is likely related to significant reverse cardiac remodeling. Ongoing trials will assess the role for ARNI therapy in patients with heart failure with preserved ejection fraction (HFpEF) and in the post-myocardial infarction setting. Future studies should comprehensively assess predictors of response to ARNI therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling--concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35:569–82. https://doi.org/10.1016/s0735-1097(99)00630-0.

    Article  CAS  PubMed  Google Scholar 

  2. Kemp CD, Conte JV. The pathophysiology of heart failure. Cardiovasc Pathol. 2012;21:365–71. https://doi.org/10.1016/j.carpath.2011.11.007.

    Article  CAS  PubMed  Google Scholar 

  3. Aimo A, Gaggin HK, Barison A, Emdin M, Januzzi JL Jr. Imaging, biomarker, and clinical predictors of cardiac remodeling in heart failure with reduced ejection fraction. J Am Coll Cardiol HF. 2019;7:782–94. https://doi.org/10.1016/j.jchf.2019.06.004.

    Article  Google Scholar 

  4. Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med. 1999;341:1276–83. https://doi.org/10.1056/NEJM199910213411706.

    Article  CAS  PubMed  Google Scholar 

  5. Dorn GW. Novel pharmacotherapies to abrogate postinfarction ventricular remodeling. Nat Rev Cardiol. 2009;6:283–91. https://doi.org/10.1038/nrcardio.2009.12.

    Article  CAS  PubMed  Google Scholar 

  6. Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling. Circulation. 2013;128:388–400. https://doi.org/10.1161/CIRCULATIONAHA.113.001878.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the studies of left ventricular dysfunction (SOLVD). J Am Coll Cardiol. 1996;27:1201–6. https://doi.org/10.1016/0735-1097(95)00589-7.

    Article  CAS  PubMed  Google Scholar 

  8. Testa M, Yeh M, Lee P, et al. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol. 1996;28:964–71. https://doi.org/10.1016/S0735-1097(96)00268-9.

    Article  CAS  PubMed  Google Scholar 

  9. Humeres C, Frangogiannis NG. Fibroblasts in the infarcted, remodeling, and failing heart. JACC: Basic Transl Sci. 2019;4:449–67. https://doi.org/10.1016/j.jacbts.2019.02.006.

    Article  Google Scholar 

  10. Barry SP, Davidson SM, Townsend PA. Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol. 2008;40:2023–39. https://doi.org/10.1016/j.biocel.2008.02.020.

    Article  CAS  PubMed  Google Scholar 

  11. Miguel P-V, Hahn VS, Kass DA. Leveraging signaling pathways to treat heart failure with reduced ejection fraction. Circ Res. 2019;124:1618–32. https://doi.org/10.1161/CIRCRESAHA.119.313682.

    Article  CAS  Google Scholar 

  12. Wang J, Clarice G, Rockman HA. G-protein–coupled receptors in heart disease. Circ Res. 2018;123:716–35. https://doi.org/10.1161/CIRCRESAHA.118.311403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cavero PG, Margulies KB, Winaver J, Seymour AA, Delaney NG, Burnett JC Jr. Cardiorenal actions of neutral endopeptidase inhibition in experimental congestive heart failure. Circulation. 1990;82:196–201. https://doi.org/10.1161/01.CIR.82.1.196.

    Article  CAS  PubMed  Google Scholar 

  14. Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Imaging. 2011;4:98–108. https://doi.org/10.1016/j.jcmg.2010.10.008.

    Article  PubMed  Google Scholar 

  15. Udelson JE, Konstam MA. Ventricular remodeling fundamental to the progression (and regression) of heart failure. J Am Coll Cardiol. 2011;57:1477–9. https://doi.org/10.1016/j.jacc.2011.01.009.

    Article  PubMed  Google Scholar 

  16. Gibb AA, Hill BG. Metabolic coordination of physiological and pathological cardiac remodeling. Circ Res. 2018;123:107–28. https://doi.org/10.1161/CIRCRESAHA.118.312017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15:387–407. https://doi.org/10.1038/s41569-018-0007-y.

    Article  CAS  PubMed  Google Scholar 

  18. Fonarow GC, Peacock WF, Phillips CO, Givertz MM, Lopatin M, ADHERE Scientific Advisory Committee and Investigators. Admission B-type natriuretic peptide levels and in-hospital mortality in acute decompensated heart failure. J Am Coll Cardiol. 2007;49:1943–50. https://doi.org/10.1016/j.jacc.2007.02.037.

    Article  CAS  PubMed  Google Scholar 

  19. Cleland JGF, McMurray JJV, Kjekshus J, Cornel JH, Dunselman P, Fonseca C, et al. Plasma concentration of amino-terminal pro-brain natriuretic peptide in chronic heart failure: prediction of cardiovascular events and interaction with the effects of rosuvastatin: a report from CORONA (Controlled Rosuvastatin Multinational Trial in Heart Failure). J Am Coll Cardiol. 2009;54:1850–9. https://doi.org/10.1016/j.jacc.2009.06.041.

    Article  CAS  PubMed  Google Scholar 

  20. Januzzi JL, Rehman SU, Mohammed AA, et al. Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol. 2011;58:1881–9. https://doi.org/10.1016/j.jacc.2011.03.072.

    Article  CAS  PubMed  Google Scholar 

  21. Weiner RB, Baggish AL, Chen-Tournoux A, Marshall JE, Gaggin HK, Bhardwaj A, et al. Improvement in structural and functional echocardiographic parameters during chronic heart failure therapy guided by natriuretic peptides: mechanistic insights from the ProBNP Outpatient Tailored Chronic Heart Failure (PROTECT) study. Eur J Heart Fail. 2013;15:342–51. https://doi.org/10.1093/eurjhf/hfs180.

    Article  CAS  PubMed  Google Scholar 

  22. Daubert MA, Adams K, Yow E, Barnhart HX, Douglas PS, Rimmer S, et al. NT-proBNP goal achievement is associated with significant reverse remodeling and improved clinical outcomes in HFrEF. JACC Heart Failure. 2019;7:158–68. https://doi.org/10.1016/j.jchf.2018.10.014.

    Article  PubMed  Google Scholar 

  23. Kramer DG, Trikalinos TA, Kent DM, Antonopoulos GV, Konstam MA, Udelson JE. Quantitative evaluation of drug or device effects on ventricular remodeling as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction: a meta-analytic approach. J Am Coll Cardiol. 2010;56:392–406. https://doi.org/10.1016/j.jacc.2010.05.011.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wilcox JE, Fonarow GC, Yancy CW, et al. Factors associated with improvement in ejection fraction in clinical practice among patients with heart failure: findings from IMPROVE HF. Am Heart J. 2012;163:49–56.e2. https://doi.org/10.1016/j.ahj.2011.10.001.

    Article  PubMed  Google Scholar 

  25. Lupón J, Gaggin HK, de Antonio M, Domingo M, Galán A, Zamora E, et al. Biomarker-assist score for reverse remodeling prediction in heart failure: the ST2-R2 score. Int J Cardiol. 2015;184:337–43. https://doi.org/10.1016/j.ijcard.2015.02.019.

    Article  PubMed  Google Scholar 

  26. Aimo A, Vergaro G, Castiglione V, Barison A, Pasanisi E, Petersen C, et al. Effect of sex on reverse remodeling in chronic systolic heart failure. JACC: Heart Fail. 2017;5:735–42. https://doi.org/10.1016/j.jchf.2017.07.011.

    Article  Google Scholar 

  27. Parikh KS, Sharma K, Fiuzat M, Surks HK, George JT, Honarpour N, et al. Heart failure with preserved ejection fraction expert panel report: current controversies and implications for clinical trials. J Am Coll Cardiol HF. 2018;6:619–32. https://doi.org/10.1016/j.jchf.2018.06.008.

    Article  Google Scholar 

  28. Lupón J, Gavidia-Bovadilla G, Ferrer E, de Antonio M, Perera-Lluna A, López-Ayerbe J, et al. Dynamic trajectories of left ventricular ejection fraction in heart failure. J Am Coll Cardiol. 2018;72:591–601. https://doi.org/10.1016/j.jacc.2018.05.042.

    Article  PubMed  Google Scholar 

  29. Izhak K, Jennifer D, Malte T, et al. Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circ Res. 2011;108:176–83. https://doi.org/10.1161/CIRCRESAHA.110.231514.

    Article  CAS  Google Scholar 

  30. Bueno OF, Molkentin JD. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res. 2002;91:776–81. https://doi.org/10.1161/01.RES.0000038488.38975.1A.

    Article  CAS  PubMed  Google Scholar 

  31. Peters Matthew N., Seliger Stephen L., Christenson Robert H., et al (2018) “Malignant” left ventricular hypertrophy identifies subjects at high risk for progression to asymptomatic left ventricular dysfunction, heart failure, and death: MESA (Multi-Ethnic Study of Atherosclerosis). Journal of the American Heart Association 7:e006619. https://doi.org/10.1161/JAHA.117.006619

  32. Pfeffer MA, Pfeffer JM, Steinberg C, Finn P. Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril. Circulation. 1985;72:406–12. https://doi.org/10.1161/01.cir.72.2.406.

    Article  CAS  PubMed  Google Scholar 

  33. Pfeffer MA, Pfeffer JM. Ventricular enlargement and reduced survival after myocardial infarction. Circulation. 1987;75:IV93–7.

    CAS  PubMed  Google Scholar 

  34. Pfeffer MA, Braunwald E, Moyé LA, Basta L, Brown EJ Jr, Cuddy TE, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial The SAVE Investigators. N Engl J Med. 1992;327:669–77. https://doi.org/10.1056/NEJM199209033271001.

    Article  CAS  PubMed  Google Scholar 

  35. Vasan RS, Larson MG, Benjamin EJ, Evans JC, Levy D. Left ventricular dilatation and the risk of congestive heart failure in people without myocardial infarction. N Engl J Med. 1997;336:1350–5. https://doi.org/10.1056/NEJM199705083361903.

    Article  CAS  PubMed  Google Scholar 

  36. Murphy SP, Ibrahim NE, Januzzi JL. Heart failure with reduced ejection fraction: a review. JAMA. 2020;324:488–504. https://doi.org/10.1001/jama.2020.10262.

    Article  PubMed  Google Scholar 

  37. Konstam MA, Rousseau MF, Kronenberg MW, Udelson JE, Melin J, Stewart D, et al. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dysfunction in patients with heart failure. SOLVD Investigators. Circulation. 1992;86:431–8. https://doi.org/10.1161/01.cir.86.2.431.

    Article  CAS  PubMed  Google Scholar 

  38. Doughty RN, Whalley GA, Gamble G, MacMahon S, Sharpe N. Left ventricular remodeling with carvedilol in patients with congestive heart failure due to ischemic heart disease. Australia-New Zealand Heart Failure Research Collaborative Group. J Am Coll Cardiol. 1997;29:1060–6. https://doi.org/10.1016/s0735-1097(97)00012-0.

    Article  CAS  PubMed  Google Scholar 

  39. Udelson JE, Feldman AM, Barry G, et al. Randomized, double-blind, multicenter, placebo-controlled study evaluating the effect of aldosterone antagonism with eplerenone on ventricular remodeling in patients with mild-to-moderate heart failure and left ventricular systolic dysfunction. Circ Heart Fail. 2010;3:347–53. https://doi.org/10.1161/CIRCHEARTFAILURE.109.906909.

    Article  CAS  PubMed  Google Scholar 

  40. Solomon SD, Elyse F, Mikhail B, et al. Effect of cardiac resynchronization therapy on reverse remodeling and relation to outcome. Circulation. 2010;122:985–92. https://doi.org/10.1161/CIRCULATIONAHA.110.955039.

    Article  PubMed  Google Scholar 

  41. Moss AJ, Hall WJ, Cannom DS, Klein H, Brown MW, Daubert JP, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361:1329–38. https://doi.org/10.1056/NEJMoa0906431.

    Article  PubMed  Google Scholar 

  42. Konstam MA, Kronenberg MW, Rousseau MF, Udelson JE, Melin J, Stewart D, et al. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dilatation in patients with asymptomatic systolic dysfunction. SOLVD (Studies of Left Ventricular Dysfunction) Investigators. Circulation. 1993;88:2277–83. https://doi.org/10.1161/01.cir.88.5.2277.

    Article  CAS  PubMed  Google Scholar 

  43. Barry G, Quinones MA, Chris K, et al. Effects of long-term enalapril therapy on cardiac structure and function in patients with left ventricular dysfunction. Circulation. 1995;91:2573–81. https://doi.org/10.1161/01.CIR.91.10.2573.

    Article  Google Scholar 

  44. Wong M, Staszewsky L, Latini R, Barlera S, Volpi A, Chiang YT, et al. Valsartan benefits left ventricular structure and function in heart failure: Val-HeFT echocardiographic study. J Am Coll Cardiol. 2002;40:970–5. https://doi.org/10.1016/s0735-1097(02)02063-6.

    Article  CAS  PubMed  Google Scholar 

  45. Wong M, Staszewsky L, Latini R, Barlera S, Glazer R, Aknay N, et al. Severity of left ventricular remodeling defines outcomes and response to therapy in heart failure: valsartan heart failure trial (Val-HeFT) echocardiographic data. J Am Coll Cardiol. 2004;43:2022–7. https://doi.org/10.1016/j.jacc.2003.12.053.

    Article  PubMed  Google Scholar 

  46. Colucci WS, Milton P, Bristow MR, et al. Carvedilol inhibits clinical progression in patients with mild symptoms of heart failure. Circulation. 1996;94:2800–6. https://doi.org/10.1161/01.CIR.94.11.2800.

    Article  CAS  PubMed  Google Scholar 

  47. Waagstein F, Hjalmarson A, Swedberg K, Bristow MR, Gilbert EM, Camerini F, et al. Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Lancet. 1993;342:1441–6. https://doi.org/10.1016/0140-6736(93)92930-R.

    Article  CAS  PubMed  Google Scholar 

  48. (1997) Randomised, placebo-controlled trial of carvedilol in patients with congestive heart failure due to ischaemic heart disease. Australia/New Zealand Heart Failure Research Collaborative Group. Lancet (London, England) 349:375–380.

  49. (1994) A randomized trial of beta-blockade in heart failure. The Cardiac Insufficiency Bisoprolol Study (CIBIS). CIBIS Investigators and Committees. Circulation 90:1765–1773. https://doi.org/10.1161/01.cir.90.4.1765

  50. Packer M, Colucci WS, Sackner-Bernstein JD, Liang CS, Goldscher DA, Freeman I, et al. Double-blind, placebo-controlled study of the effects of carvedilol in patients with moderate to severe heart failure. The PRECISE Trial Prospective Randomized Evaluation of Carvedilol on Symptoms and Exercise. Circulation. 1996;94:2793–9. https://doi.org/10.1161/01.cir.94.11.2793.

    Article  CAS  PubMed  Google Scholar 

  51. Bristow MR, Gilbert EM, Abraham WT, Adams KF, Fowler MB, Hershberger RE, et al. Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. Circulation. 1996;94:2807–16. https://doi.org/10.1161/01.CIR.94.11.2807.

    Article  CAS  PubMed  Google Scholar 

  52. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med. 1999;341:709–17. https://doi.org/10.1056/NEJM199909023411001.

    Article  CAS  PubMed  Google Scholar 

  53. Velagaleti RS, Gona P, Levy D, Aragam J, Larson MG, Tofler GH, et al. Relations of biomarkers representing distinct biological pathways to left ventricular geometry. Circulation. 2008;118:2252–8. https://doi.org/10.1161/CIRCULATIONAHA.108.817411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Iraqi W, Rossignol P, Angioi M, Fay R, Nuée J, Ketelslegers JM, et al. Extracellular cardiac matrix biomarkers in patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure: insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) study. Circulation. 2009;119:2471–9. https://doi.org/10.1161/CIRCULATIONAHA.108.809194.

    Article  CAS  PubMed  Google Scholar 

  55. Begoña L, Arantxa G, Javier D. Circulating biomarkers of collagen metabolism in cardiac diseases. Circulation. 2010;121:1645–54. https://doi.org/10.1161/CIRCULATIONAHA.109.912774.

    Article  Google Scholar 

  56. (1999) Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in-Congestive Heart Failure (MERIT-HF). The Lancet 353:2001–2007. https://doi.org/10.1016/S0140-6736(99)04440-2

  57. Velagaleti RS, Gona P, Sundström J, et al. Relations of biomarkers of extracellular matrix remodeling to incident cardiovascular events and mortality (R2). Arterioscler Thromb Vasc Biol. 2010;30:2283–8. https://doi.org/10.1161/ATVBAHA.110.208462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weir RAP, Miller AM, Murphy GEJ, Clements S, Steedman T, Connell JMC, et al. Serum soluble ST2: a potential novel mediator in left ventricular and infarct remodeling after acute myocardial infarction. J Am Coll Cardiol. 2010;55:243–50. https://doi.org/10.1016/j.jacc.2009.08.047.

    Article  CAS  PubMed  Google Scholar 

  59. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28. https://doi.org/10.1056/NEJMoa1504720.

    Article  CAS  PubMed  Google Scholar 

  60. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57. https://doi.org/10.1056/NEJMoa1611925.

    Article  CAS  PubMed  Google Scholar 

  61. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–57. https://doi.org/10.1056/NEJMoa1812389.

    Article  CAS  PubMed  Google Scholar 

  62. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995–2008. https://doi.org/10.1056/NEJMoa1911303.

    Article  CAS  PubMed  Google Scholar 

  63. Lee Matthew M. Y., Brooksbank Katriona J. M., Wetherall Kirsty, et al (2020) Effect of empagliflozin on left ventricular volumes in patients with type 2 diabetes, or prediabetes, and heart failure with reduced ejection fraction (SUGAR-DM-HF). Circulation 0: https://doi.org/10.1161/CIRCULATIONAHA.120.052186

  64. Santos-Gallego Carlos G., Vargas-Delgado Ariana P., Requena Juan Antonio, et al (2020) Randomized trial of empagliflozin in non-diabetic patients with heart failure and reduced ejection fraction. Journal of the American College of Cardiology 0: https://doi.org/10.1016/j.jacc.2020.11.008

  65. Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346:1845–53. https://doi.org/10.1056/NEJMoa013168.

    Article  PubMed  Google Scholar 

  66. St John Sutton Martin G, Ted P, Abraham WT, et al. Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation. 2003;107:1985–90. https://doi.org/10.1161/01.CIR.0000065226.24159.E9.

    Article  CAS  PubMed  Google Scholar 

  67. Cleland JGF, Daubert J-C, Erdmann E, Freemantle N, Gras D, Kappenberger L, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539–49. https://doi.org/10.1056/NEJMoa050496.

    Article  CAS  PubMed  Google Scholar 

  68. Mathias A, Moss AJ, McNitt S, Zareba W, Goldenberg I, Solomon SD, et al. Clinical implications of complete left-sided reverse remodeling with cardiac resynchronization therapy: a MADIT-CRT substudy. J Am Coll Cardiol. 2016;68:1268–76. https://doi.org/10.1016/j.jacc.2016.06.051.

    Article  PubMed  Google Scholar 

  69. McMurray JJV, Packer M, Desai AS, et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004. https://doi.org/10.1056/NEJMoa1409077.

    Article  CAS  PubMed  Google Scholar 

  70. Zile MR, Claggett BL, Prescott MF, McMurray JJV, Packer M, Rouleau JL, et al. Prognostic implications of changes in N-terminal pro-B-type natriuretic peptide in patients with heart failure. J Am Coll Cardiol. 2016;68:2425–36. https://doi.org/10.1016/j.jacc.2016.09.931.

    Article  CAS  PubMed  Google Scholar 

  71. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891–975. https://doi.org/10.1002/ejhf.592.

    Article  PubMed  Google Scholar 

  72. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2017;70:776–803. https://doi.org/10.1016/j.jacc.2017.04.025.

    Article  PubMed  Google Scholar 

  73. Schmieder RE, Wagner F, Mayr M, Delles C, Ott C, Keicher C, et al. The effect of sacubitril/valsartan compared to olmesartan on cardiovascular remodelling in subjects with essential hypertension: the results of a randomized, double-blind, active-controlled study. Eur Heart J. 2017;38:3308–17. https://doi.org/10.1093/eurheartj/ehx525.

    Article  CAS  PubMed  Google Scholar 

  74. Kang D-H, Park S-J, Shin S-H, Hong GR, Lee S, Kim MS, et al. Angiotensin receptor neprilysin inhibitor for functional mitral regurgitation. Circulation. 2019;139:1354–65. https://doi.org/10.1161/CIRCULATIONAHA.118.037077.

    Article  CAS  PubMed  Google Scholar 

  75. Almufleh A, Marbach J, Chih S, Stadnick E, Davies R, Liu P, et al. Ejection fraction improvement and reverse remodeling achieved with sacubitril/valsartan in heart failure with reduced ejection fraction patients. Am J Cardiovasc Dis. 2017;7:108–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. De Diego C, Gonzalez-Torres L, Centurion ER, et al. P787Angiotensin-neprilysin inhibition further reverses cardiac remodeling as compared to angiotensin inhibition in reduced heart failure patients. Europace. 2018;20:i139. https://doi.org/10.1093/europace/euy015.391.

    Article  Google Scholar 

  77. Martens P, Beliën H, Dupont M, Vandervoort P, Mullens W. The reverse remodeling response to sacubitril/valsartan therapy in heart failure with reduced ejection fraction. Cardiovasc Ther. 2018;36:e12435. https://doi.org/10.1111/1755-5922.12435.

    Article  CAS  PubMed  Google Scholar 

  78. Wang Y, Zhou R, Lu C, Chen Q, Xu T, Li D. Effects of the angiotensin-receptor neprilysin inhibitor on cardiac reverse remodeling: meta-analysis. J Am Heart Assoc. 2019;8:e012272. https://doi.org/10.1161/JAHA.119.012272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Desai AS, Solomon SD, Shah AM, et al. Effect of sacubitril-valsartan vs enalapril on aortic stiffness in patients with heart failure and reduced ejection fraction. JAMA. 2019;322:1077–84. https://doi.org/10.1001/jama.2019.12843This study offered insights into the early beneficial effects of sacubitril/valsartan on cardiac geometries after 12 weeks of therapy. In this double-blind clinical trial of 464 patients with HFrEF on GDMT, patients treated with sacubitril/valsartan had reduction in both atrial and ventricular volumes, improvement in diastolic function, reduction in NT-proBNP and improvements in quality of life scores as compared to those treated with enalapril, although no change in LVEF.

  80. Januzzi JL, Prescott MF, Butler J, et al. Association of Change in N-Terminal Pro–B-Type Natriuretic Peptide Following Initiation of Sacubitril-Valsartan Treatment With Cardiac Structure and Function in Patients With Heart Failure With Reduced Ejection Fraction. JAMA. 2019;322:1085–95. https://doi.org/10.1001/jama.2019.12821This study offered definitive evidence of reverse cardiac remodeling after initiation of sacubitril/valsartan. In this single-group prospective open-label study of 794 patients with HFrEF, patients demonstrated early and persistent reduction in both atrial and ventricular volumes, reduction in NT-proBNP, and increase in LVEF.

    Article  CAS  PubMed Central  Google Scholar 

  81. Piña IL, Camacho A, Ibrahim NE, et al. Improvement of health status following initiation of sacubitril/valsartan in heart failure and reduced ejection fraction. JACC: Heart Failure. 2020. https://doi.org/10.1016/j.jchf.2020.09.012In this sub-study of PROVE-HF, reduction in NT-proBNP was strongly associated with improved health status as assessed with the Kansas City Cardiomyopathy Questionnaire.

  82. Ibrahim NE, Piña IL, Camacho A, et al. Sex-based differences in biomarkers, health status, and reverse cardiac remodelling in patients with heart failure with reduced ejection fraction treated with sacubitril/valsartan. Eur J Heart Fail. 2020;n/a. https://doi.org/10.1002/ejhf.2005This sub-study of the PROVE-HF cohort increased the understanding of sex difference in remodeling after initiation of sacubiltril/valsartan. In this analysis, women and men demonstrated similar degrees of reverse remodeling, however woman did so earlier in parallel with their rapid early decline in circulating NT-proBNP.

  83. Ibrahim Nasrien E, Piña Ileana L, Camacho A, et al. Racial and ethnic differences in biomarkers, health status, and cardiac remodeling in patients with heart failure with reduced ejection fraction treated with sacubitril/valsartan. Circ Heart Fail. 2020;0. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007829Data on race and ethnicity from this PROVE-HF sub-study revealed Black and Hispanic patients had lower baseline NT-proBNP than did White patients, yet after initiation of ARNI therapy NT-proBNP decreased similarly in all three groups, along with comparable improvement in LVEF, LVEDVi and LVESVi across race/ethnicity categories.

  84. Murphy SP, Prescott MF, Camacho A, et al. Atrial Natriuretic Peptide and Treatment With Sacubitril/Valsartan in Heart Failure With Reduced Ejection Fraction. JACC Heart Fail. 2020;S2213–1779(20):30577–1. https://doi.org/10.1016/j.jchf.2020.09.013. In this sub-study of PROVE-HF, following initiation of sacubitril/valsartan, concentrations of ANP increased most markedly during the first two months of therapy. Importantly, more substantial early, rapid rise in ANP was strongly predictive of later improvements in LVEF and reductions in LAVi.

  85. Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012;380:1387–95. https://doi.org/10.1016/S0140-6736(12)61227-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Januzzi.

Ethics declarations

Conflict of Interest

Dr. Januzzi is a Trustee of the American College of Cardiology; a Board member of Imbria Pharmaceuticals; has received grant support from Novartis Pharmaceuticals and Abbott Diagnostics and consulting income from Abbott, Janssen, Novartis, and Roche Diagnostics; and participates in clinical endpoint committees/data safety monitoring boards for Abbott, AbbVie, Amgen, Janssen, and Takeda. Dr. Abboud declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Clinical Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abboud, A., Januzzi, J.L. Reverse Cardiac Remodeling and ARNI Therapy. Curr Heart Fail Rep 18, 71–83 (2021). https://doi.org/10.1007/s11897-021-00501-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-021-00501-6

Keywords

Navigation