Skip to main content

Advertisement

Log in

Evidence of Clonal Hematopoiesis and Risk of Heart Failure

  • Biomarkers of Heart Failure (WH Tang & J Grodin, Section Editors)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by persistent clonal expansion of adult hematopoietic stem cells, which has been increasingly found to be associated with cardiovascular disease and adverse outcomes in heart failure. Here we outline emerging studies on the prevalence of CHIP, and its association with cardiovascular and heart disease.

Recent Findings

Previous genomic studies have found CHIP mutations to be associated with increased risks of arterial disease, stroke, and mortality. Murine studies exploring TET2, DNMT3A, and JAK2 mutations have shown changes in cellularity that decrease cardiac function after insult, as well as increase inflammasome activation.

Summary

Mutations in driver genes are associated with worse clinical outcomes in heart failure patients, as a potential result of the proinflammatory selection in clonal hematopoiesis. Advances in the field have yielded therapeutic targets tested in recent clinical studies and may provide a valuable diagnostic of risk in heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141:e139–596.

    PubMed  Google Scholar 

  2. Dunlay SM, Pereira NL, Kushwaha SS. Contemporary strategies in the diagnosis and management of heart failure. Mayo Clin Proc. 2014;89:662–76.

    Article  PubMed  Google Scholar 

  3. Agarwal SK, Chambless LE, Ballantyne CM, et al. Prediction of incident heart failure in general practice: the Atherosclerosis Risk in Communities (ARIC) study. Circ Heart Fail. 2012;5:422–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lewis EF. The hope that early detection can tip the scale towards heart failure prevention. JACC Heart Fail. 2017;5:191–3.

    Article  PubMed  Google Scholar 

  5. Sun J, Hu J, Luo D, Markatou M, Wang F, Edabollahi S, et al. Combining knowledge and data driven insights for identifying risk factors using electronic health records. AMIA Annu Symp Proc. 2012;2012:901–10.

    PubMed  PubMed Central  Google Scholar 

  6. Wang Y, Ng K, Byrd RJ, Hu J, Ebadollahi S, Daar Z, deFilippi C, Steinhubl SR, Stewart WF (2015) Early detection of heart failure with varying prediction windows by structured and unstructured data in electronic health records. Conf Proc . Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2015:2530–3.

  7. Choi E, Schuetz A, Stewart WF, Sun J. Using recurrent neural network models for early detection of heart failure onset. J Am Med Inform Assoc. 2017;24:361–70.

    Article  PubMed  Google Scholar 

  8. Skrzynia C, Berg J, Willis M, Jensen B. Genetics and heart failure: a concise guide for the clinician. Curr Cardiol Rev. 2014;11:10–7.

    Article  Google Scholar 

  9. Mazzarotto F, Tayal U, Buchan RJ, et al. Reevaluating the genetic contribution of monogenic dilated cardiomyopathy. Circulation. 2020;141:387–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013;10:531–47.

    Article  CAS  PubMed  Google Scholar 

  11. Watkins H, Ashrafian H, Redwood C. Inherited cardiomyopathies. N Engl J Med. 2011;364:1643–56.

    Article  CAS  PubMed  Google Scholar 

  12. Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace. 2011;13:1077–109.

    Article  PubMed  Google Scholar 

  13. Buniello A, Macarthur JAL, Cerezo M, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47:D1005–12.

    Article  CAS  PubMed  Google Scholar 

  14. van der Harst P, van Setten J, Verweij N, et al. 52 genetic loci influencing myocardial mass. J Am Coll Cardiol. 2016;68:1435–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Shah S, Henry A, Roselli C, et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat Commun. 2020;11:163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Walsh R, Thomson KL, Ware JS, et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med. 2017;19:192–203.

    Article  PubMed  Google Scholar 

  17. Lee-Six H, Øbro NF, Shepherd MS, et al. Population dynamics of normal human blood inferred from somatic mutations. Nature. 2018;561:473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 2016;13:368–78.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361:1058–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nowell C. The minute chromosome (Ph1) in chronic granulocytic leukemia. Blut Zeitschrift für die Gesamte Blutforsch. 1962;8:65–6.

    Article  CAS  Google Scholar 

  22. Busque L, Gilliland DG. X-inactivation analysis in the 1990s: promise and potential problems. Leukemia. 1998;12:128–35.

    Article  CAS  PubMed  Google Scholar 

  23. Patel AP, Natarajan P. A new murine model of clonal hematopoiesis investigates JAK2V617F in heart failure. JACC Basic to Transl Sci. 2019;4:698–700.

    Article  Google Scholar 

  24. Abelson S, Collord G, Ng SWK, et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature. 2018;559:400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sano S, Wang Y, Walsh K. Clonal hematopoiesis and its impact on cardiovascular disease. Circ J. 2019;83:2–11.

    Article  CAS  Google Scholar 

  26. Gibson CJ, Lindsley RC, Tchekmedyian V, et al. Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma. J Clin Oncol. 2017;35:1598–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xie M, Lu C, Wang J, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20:1472–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Genovese G, Kähler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. • Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98 Key paper showing age-related clonal hematopoiesis with adverse outcomes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. • Dorsheimer L, Assmus B, Rasper T, et al. Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol. 2019;4:25–33 First report of association between patients with chronic ischemic heart failure with clonal hematopoiesis.

    Article  PubMed  Google Scholar 

  31. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.

    Article  CAS  PubMed  Google Scholar 

  32. Ko M, Huang Y, Jankowska AM, et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010;468:839–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Norton N, Li D, Rieder MJ, et al. Genome-wide studies of copy number variation and exome sequencing identify rare variants in BAG3 as a cause of dilated cardiomyopathy. Am J Hum Genet. 2011;88:273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bonnefond A, Skrobek B, Lobbens S, et al. Association between large detectable clonal mosaicism and type 2 diabetes with vascular complications. Nat Genet. 2013;45:1040–3.

    Article  CAS  PubMed  Google Scholar 

  35. • Jaiswal S, Natarajan P, Silver AJ, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377:111–21 Key paper linking CHIP with adverse cardiovascular outcomes.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dorsheimer L, Assmus B, Rasper T, et al (2019) Hematopoietic alterations in chronic heart failure patients by somatic mutations leading to clonal hematopoiesis. Haematologica haematol.2019.224402.

  37. • Fuster JJ, MacLauchlan S, Zuriaga MA, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science (80- ). 2017;355:842–7 This is one of the first papers to mechanistically linked TET2 mutations and atherosclerotic development.

    Article  CAS  Google Scholar 

  38. Sano S, Oshima K, Wang Y, Katanasaka Y, Sano M, Walsh K. CRISPR-mediated gene editing to assess the roles of TET2 and DNMT3A in clonal hematopoiesis and cardiovascular disease. Circ Res. 2018;123:335–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. • Sano S, Oshima K, Wang Y, et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 Inflammasome. J Am Coll Cardiol. 2018;71:875–86 This papers to mechanistically linked TET2 mutations with heart failure progression and inflammasomes in animal models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Quintás-Cardama A, Kantarjian H, Cortes J, Verstovsek S. Janus kinase inhibitors for the treatment of myeloproliferative neoplasias and beyond. Nat Rev Drug Discov. 2011;10:127–40.

    Article  PubMed  CAS  Google Scholar 

  41. James C, Ugo V, Le Couédic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.

    Article  CAS  PubMed  Google Scholar 

  42. Gupta N, Edelmann B, Schnoeder TM, Saalfeld FC, Wolleschak D, Kliche S, et al. JAK2-V617F activates β1-integrin-mediated adhesion of granulocytes to vascular cell adhesion molecule 1. Leukemia. 2017;31:1223–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Edelmann B, Gupta N, Schnoeder TM, et al. JAK2-V617F promotes venous thrombosis through beta-1/beta-2 integrin activation. J Clin Invest. 2018;128:4359–71.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu DJ, Peloso GM, Yu H, et al. Exome-wide association study of plasma lipids in >300,000 individuals. Nat Genet. 2017;49:1758–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mead AJ, Mullally A. Myeloproliferative neoplasm stem cells. Blood. 2017;129:1607–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. • Sano S, Wang Y, Yura Y, et al. JAK2V617F-mediated clonal hematopoiesis accelerates pathological remodeling in murine heart failure. JACC Basic to Transl Sci. 2019;4:684–97 This papers to mechanistically linked JAC2 mutations with cardiac remodeling in animal models.

    Article  Google Scholar 

  47. Abbate A. The heart on fire: inflammasome and cardiomyopathy. Exp Physiol. 2013;98:385.

    Article  CAS  PubMed  Google Scholar 

  48. Pomerantz BJ, Reznikov LL, Harken AH, Dinarello CA. Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1β. Proc Natl Acad Sci U S A. 2001;98:2871–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Butts B, Gary RA, Dunbar SB, Butler J. The importance of NLRP3 inflammasome in heart failure. J Card Fail. 2015;21:586–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Toldo S, Kannan H, Bussani R, et al. Formation of the inflammasome in acute myocarditis. Int J Cardiol. 2014. https://doi.org/10.1016/j.ijcard.2013.12.137.

  51. Bracey NA, Beck PL, Muruve DA, et al. The Nlrp3 inflammasome promotes myocardial dysfunction in structural cardiomyopathy through interleukin-1β. Exp Physiol. 2013;98:462–72.

    Article  CAS  PubMed  Google Scholar 

  52. Ridker PM, Thuren T, Zalewski A, Libby P. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J. 2011;162:597–605.

    Article  CAS  PubMed  Google Scholar 

  53. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.

    Article  CAS  PubMed  Google Scholar 

  54. Abbate A, Van Tassell BW, Biondi-Zoccai G, et al. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. Am J Cardiol. 2013;111:1394–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Abbate A, Kontos MC, Grizzard JD, et al. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] pilot study). Am J Cardiol. 2010;105:1371–1377.e1.

    Article  CAS  PubMed  Google Scholar 

  56. Hasselbalch HC. Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood. 2012;119:3219–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Dr. Tang is partially supported by grants from the National Institutes of Health and the Office of Dietary Supplements (R01DK106000, R01HL126827).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Wilson Tang.

Ethics declarations

Conflict of Interest

Dr. Tang is a consultant for Sequana Medical A.G. and has received honorarium from Springer Nature for authorship/editorship, both unrelated to the contents of this paper. All other authors have no relationships to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biomarkers of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazeley, P., Morales, R. & Tang, W.H.W. Evidence of Clonal Hematopoiesis and Risk of Heart Failure. Curr Heart Fail Rep 17, 271–276 (2020). https://doi.org/10.1007/s11897-020-00476-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-020-00476-w

Keywords

Navigation