Skip to main content

Advertisement

Log in

Novel Insights and Treatment Strategies for Right Heart Failure

  • Pharmacologic Therapy (W.H.W. Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The function of the right ventricle (RV) is intimately linked to its preload (systemic volume status) and afterload (pulmonary vasculature). In this review, we explore current knowledge in RV physiology, RV function assessment, causes of right heart failure (RHF), and specific treatment strategies for RHF.

Recent Findings

We examine the evidence behind new pharmacological therapies available, such as macitentan and riociguat in the treatment of specific etiologies of RHF. We will also focus on RHF in the setting of heart failure with preserved ejection fraction (HFpEF) and in the presence of left ventricular assist devices (LVAD), looking at current treatment recommendations, including mechanical circulatory support. Lastly, we will look to the horizon for the latest research on RHF, including the molecular basis of RHF and potential novel treatment methods for this old yet poorly understood syndrome.

Summary

Disturbances in this complex relationship result in the clinical syndrome of RHF. Despite advances in the management of left heart diseases, much work remains to be done to understand and manage RHF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, et al. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114:1883–91. https://doi.org/10.1161/CIRCULATIONAHA.106.632208. Key scientific statement on mechanisms of right heart failure.

    Article  PubMed  Google Scholar 

  2. Vonk Noordegraaf A, Westerhof BE, Westerhof N. The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol. 2017;69:236–43. https://doi.org/10.1016/j.jacc.2016.10.047.

    Article  PubMed  Google Scholar 

  3. Rain S, Handoko ML, Vonk Noordegraaf A, Bogaard HJ, van der Velden J, de Man FS. Pressure-overload-induced right heart failure. Pflugers Arch. 2014;466:1055–63. https://doi.org/10.1007/s00424-014-1450-1.

    Article  CAS  PubMed  Google Scholar 

  4. Surkova E, Muraru D, Iliceto S, Badano LP. The use of multimodality cardiovascular imaging to assess right ventricular size and function. Int J Cardiol. 2016;214:54–69. https://doi.org/10.1016/j.ijcard.2016.03.074.

    Article  PubMed  Google Scholar 

  5. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39e14. https://doi.org/10.1016/jecho201410.003.

    Article  PubMed  Google Scholar 

  6. Ghio S, Pazzano AS, Klersy C, Scelsi L, Raineri C, Camporotondo R, et al. Clinical and prognostic relevance of echocardiographic evaluation of right ventricular geometry in patients with idiopathic pulmonary arterial hypertension. Am J Cardiol. 2011;107(4):628–32. https://doi.org/10.1016/j.amjcard.2010.10.027.

    Article  PubMed  Google Scholar 

  7. Frémont B, Pacouret G, Jacobi D, Puglisi R, Charbonnier B, de Labriolle A. Prognostic value of echocardiographic right/left ventricular end-diastolic diameter ratio in patients with acute pulmonary embolism: results from a monocenter registry of 1,416 patients. Chest. 2008;133:358–62. https://doi.org/10.1378/chest.07-1231.

    Article  PubMed  Google Scholar 

  8. Anavekar NS, Skali H, Bourgoun M, Ghali JK, Kober L, Maggioni AP, et al. Usefulness of right ventricular fractional area change to predict death, heart failure, and stroke following myocardial infarction (from the VALIANT ECHO study). Am J Cardiol. 2008;101:607–12. https://doi.org/10.1016/j.amjcard.2007.09.115.

    Article  PubMed  Google Scholar 

  9. Ghio S, Recusani F, Klersy C, Sebastiani R, Laudisa ML, Campana C, et al. Prognostic usefulness of the tricuspid annular plane systolic excursion in patients with congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am J Cardiol. 2000;85:837–42. https://doi.org/10.1016/S0002-9149(99)00877-2.

    Article  CAS  PubMed  Google Scholar 

  10. Tei C, Dujardin KS, Hodge DO, Bailey KR, McGoon MD, Tajik AJ, et al. Doppler echocardiographic index for assessment of global right ventricular function. J Am Soc Echocardiogr. 1996;9:838–47.

    Article  CAS  PubMed  Google Scholar 

  11. Singbal Y, Vollbon W, Huynh LT, Wang WY, Ng AC, Wahi S. Exploring noninvasive tricuspid dP/dt as a marker of right ventricular function. Echocardiography. 2015;32:1347–51. https://doi.org/10.1111/echo.12877.

    Article  PubMed  Google Scholar 

  12. Meluzín J, Spinarová L, Dusek L, Toman J, Hude P, Krejcí J. Prognostic importance of the right ventricular function assessed by Doppler tissue imaging. Eur J Echocardiogr. 2003;4:262–71. https://doi.org/10.1016/S1525-2167(02)00171-3.

    Article  PubMed  Google Scholar 

  13. Schoepf UJ, Goldhaber SZ, Costello P. Spiral computed tomography for acute pulmonary embolism. Circulation. 2004;109:2160–7. https://doi.org/10.1161/01.CIR.0000128813.04325.08.

    Article  PubMed  Google Scholar 

  14. Ghaye B, Ghuysen A, Bruyere PJ, D’Orio V, Dondelinger RF. Can CT pulmonary angiography allow assessment of severity and prognosis in patients presenting with pulmonary embolism? What the radiologist needs to know. Radiographics. 2006;26(1):23–39. https://doi.org/10.1148/rg.261055062.

    Article  PubMed  Google Scholar 

  15. Larose E, Ganz P, Reynolds HG, Dorbala S, Di Carli MF, Brown KA, et al. Right ventricular dysfunction assessed by cardiovascular magnetic resonance imaging predicts poor prognosis late after myocardial infarction. J Am Coll Cardiol. 2007;49:855–62. https://doi.org/10.1016/j.jacc.2006.10.056.

    Article  PubMed  Google Scholar 

  16. Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010;121:1533–41. https://doi.org/10.1161/CIRCULATIONAHA.108.840827.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139:1316–24. https://doi.org/10.1016/j.jtcvs.2009.11.020.

    Article  PubMed  Google Scholar 

  18. Lopez-Sendon J, Coma-Canella I, Gamallo C. Sensitivity and specicity of hemodynamic criteria in the diagnosis of acute right ventricular infarction. Circulation. 1981;64:515–25.

    Article  CAS  PubMed  Google Scholar 

  19. Morine KJ, Kiernan MS, Pham DT, Paruchuri V, Denofrio D, Kapur NK. Pulmonary artery pulsatility index is associated with right ventricular failure after left ventricular assist device surgery. J Card Fail. 2016;22:110–6. https://doi.org/10.1016/j.cardfail.2015.10.019.

    Article  PubMed  Google Scholar 

  20. Korabathina R, Heffernan KS, Paruchuri V, Patel AR, Mudd JO, Prutkin JM, et al. The pulmonary artery pulsatility index identifies severe right ventricular dysfunction in acute inferior myocardial infarction. Catheter Cardiovasc Interv. 2012;80:593–600. https://doi.org/10.1002/ccd.23309.

    Article  PubMed  Google Scholar 

  21. Dupont M, Mullens W, Skouri HN, Abrahams Z, Wu Y, Taylor DO, et al. Prognostic role of pulmonary arterial capacitance in advanced heart failure. Circ Heart Fail. 2012;5:778–85. https://doi.org/10.1161/CIRCHEARTFAILURE.112.968511.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Claussen J, Turkbey EB, Williams R, et al. Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson. 2015;17:29. https://doi.org/10.1186/s12968-015-0111-7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kapur NK, Esposito ML, Bader Y, Morine KJ, Kiernan MS, Pham DT, et al. Mechanical circulatory support devices for acute right ventricular failure. Circulation. 2017;136:314–26. https://doi.org/10.1161/CIRCULATIONAHA.116.025290.

    Article  PubMed  Google Scholar 

  24. Turkoglu S, Erden M, Ozdemir M. Isolated right ventricular infarction due to occlusion of the right ventricular branch in the absence of percutaneous coronary intervention. Can J Cardiol. 2008;24:793–4.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Van der Bolt CL, Vermeersch PH, Plokker HW. Isolated acute occlusion of a large right ventricular branch of the right coronary artery following coronary balloon angioplasty: the only true “model” to study ECG changes in acute, isolated right ventricular infarction. Eur Heart J. 1996;17:247–50. https://doi.org/10.1093/oxfordjournals.eurheartj.a014841.

    Article  PubMed  Google Scholar 

  26. Corrado D, Basso C, Judge DP. Arrhythmogenic cardiomyopathy. Circ Res. 2017;121:784–802. https://doi.org/10.1161/CIRCRESAHA.117.309345.

    Article  CAS  PubMed  Google Scholar 

  27. Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37:67–119. https://doi.org/10.1093/eurheartj/ehv317.

    Article  PubMed  Google Scholar 

  28. • Harjola VP, Mebazaa A, Čelutkienė J, Bettex D, Bueno H, Chioncel O, et al. Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur J Heart Fail. 2016;18:226–41. https://doi.org/10.1002/ejhf.478. European working group scientific statement on acute right heart failure, outlining support strategies in acute setting.

    Article  PubMed  Google Scholar 

  29. Verbrugge FH, Dupont M, Steels P, Grieten L, Malbrain M, Tang WH, et al. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol. 2013;62(6):485–95. https://doi.org/10.1016/j.jacc.2013.04.070.

    Article  PubMed  Google Scholar 

  30. Mullens W, Abrahams Z, Skouri HN, Francis GS, Taylor DO, Starling RC, et al. Elevated intra-abdominal pressure in acute decompensated heart failure: a potential contributor to worsening renal function? J Am Coll Cardiol. 2008;51:300–6. https://doi.org/10.1016/j.jacc.2007.09.043.

    Article  PubMed  Google Scholar 

  31. van Veldhuisen DJ, Anker SD, Ponikowski P, Macdougall IC. Anemia and iron deficiency in heart failure: mechanisms and therapeutic approaches. Nat Rev Cardiol. 2011;8:485–93. https://doi.org/10.1038/nrcardio.2011.77.

    Article  PubMed  CAS  Google Scholar 

  32. van der Meer P, Lok DJ, Januzzi JL, de la Porte PW, Lipsic E, van Wijngaarden J, et al. Adequacy of endogenous erythropoietin levels and mortality in anaemic heart failure patients. Eur Heart J. 2008;29:1510–5. https://doi.org/10.1093/eurheartj/ehn205.

    Article  PubMed  CAS  Google Scholar 

  33. Ghio S, Klersy C, Magrini G, D'Armini AM, Scelsi L, Raineri C, et al. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int J Cardiol. 2010;140:272–8. https://doi.org/10.1016/j.ijcard.2008.11.051.

    Article  PubMed  Google Scholar 

  34. Fine NM, Chen L, Bastiansen PM, Frantz RP, Pellikka PA, Oh JK, et al. Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imaging. 2013;6:711–21. https://doi.org/10.1161/CIRCIMAGING.113.000640.

    Article  PubMed  Google Scholar 

  35. Sitbon O, Humbert M, Jaïs X, Ioos V, Hamid AM, Provencher S, et al. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation. 2005;111:3105–11. https://doi.org/10.1161/CIRCULATIONAHA.104.488486.

    Article  CAS  PubMed  Google Scholar 

  36. Olschewski H, Simonneau G, Galiè N, Higenbottam T, Naeije R, Rubin LJ, et al. Inhaled iloprost in severe pulmonary hypertension. N Engl J Med. 2002;347:322–9. https://doi.org/10.1056/NEJMoa020204.

    Article  CAS  PubMed  Google Scholar 

  37. Jing ZC, Parikh K, Pulido T, Jerjes-Sanchez C, White RJ, Allen R, et al. Efficacy and safety of oral treprostinil monotherapy for the treatment of pulmonary arterial hypertension: a randomized, controlled trial. Circulation. 2013;127:624–33. https://doi.org/10.1161/CIRCULATIONAHA.112.124388.

    Article  CAS  PubMed  Google Scholar 

  38. Barst RJ, Rubin LJ, Long WA, McGoon MD, Rich S, Badesch DB, et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. N Engl J Med. 1996;334:296–301. https://doi.org/10.1056/NEJM199602013340504.

    Article  CAS  PubMed  Google Scholar 

  39. Galiè N, Ghofrani HA, Torbicki A, Barst RJ, Rubin LJ, Badesch D, et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 2005;353:2148–57. https://doi.org/10.1056/NEJMoa050010.

    Article  PubMed  Google Scholar 

  40. Galiè N, Brundage BH, Ghofrani HA, Oudiz RJ, Simonneau G, Safdar Z, et al. Tadalafil therapy for pulmonary arterial hypertension. Circulation. 2009;119:2894–903. https://doi.org/10.1161/CIRCULATIONAHA.108.839274.

    Article  PubMed  CAS  Google Scholar 

  41. Channick RN, Simonneau G, Sitbon O, Robbins IM, Frost A, Tapson VF, et al. Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study. Lancet. 2001;358:1119–23. https://doi.org/10.1016/S0140-6736(01)06250-X.

    Article  CAS  PubMed  Google Scholar 

  42. Rubin LJ, Badesch DB, Barst RJ, Galie N, Black CM, Keogh A, et al. Bosentan therapy for pulmonary arterial hypertension. N Engl J Med. 2002;346:896–903. https://doi.org/10.1056/NEJMoa012212.

    Article  CAS  PubMed  Google Scholar 

  43. Galiè N, Olschewski H, Oudiz RJ, Torres F, Frost A, Ghofrani HA, et al. Ambrisentan for the treatment of pulmonary arterial hypertension. Results of the ambrisentan in pulmonary arterial hypertension, randomized, double-blind, placebo-controlled, multicenter, efficacy (ARIES) study 1 and 2. Circulation. 2008;117:3010–9. https://doi.org/10.1161/CIRCULATIONAHA.107.742510.

    Article  PubMed  CAS  Google Scholar 

  44. Pulido T, Adzerikho I, Channick RN, Delcroix M, Galiè N, Ghofrani HA, et al. Macitentan and morbidity and mortality in pulmonary arterial hypertension. N Engl J Med. 2013;369:809–18. https://doi.org/10.1056/NEJMoa1213917.

    Article  CAS  PubMed  Google Scholar 

  45. Ghofrani HA, Galiè N, Grimminger F, Grunig E, Humbert M, Jing ZC, et al. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med. 2013;369:330–40. https://doi.org/10.1056/NEJMoa1209655.

    Article  CAS  PubMed  Google Scholar 

  46. Sitbon O, Channick R, Chin KM, Frey A, Gaine S, Galiè N, et al. Selexipag for the treatment of pulmonary arterial hypertension. N Engl J Med. 2015;373:2522–33. https://doi.org/10.1056/NEJMoa1503184.

    Article  CAS  PubMed  Google Scholar 

  47. Kemp K, Savale L, O’Callaghan DS, Jaïs X, Montani D, Humbert M, et al. Usefulness of first-line combination therapy with epoprostenol and bosentan in pulmonary arterial hypertension: an observational study. J Heart Lung Transplant. 2012;31:150–8. https://doi.org/10.1016/j.healun.2011.11.002.

    Article  PubMed  Google Scholar 

  48. Sitbon O, Jaïs X, Savale L, Cottin V, Bergot E, Macari EA, et al. Upfront triple combination therapy in pulmonary arterial hypertension: a pilot study. Eur Respir J. 2014;43:1691–7. https://doi.org/10.1183/09031936.00116313.

    Article  PubMed  Google Scholar 

  49. Galiè N, Barberà JA, Frost AE, Ghofrani HA, Hoeper MM, McLaughlin VV, et al. Initial use of ambrisentan plus tadalafil in pulmonary arterial hypertension. N Engl J Med. 2015;373:834–44. https://doi.org/10.1056/NEJMoa1413687.

    Article  PubMed  CAS  Google Scholar 

  50. Baumgartner H, Bonhoeffer P, De Groot NM, de Haan F, Deanfield JE, Galie N, et al. ESC guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J. 2010;31:2915–57. https://doi.org/10.1093/eurheartj/ehq249.

    Article  PubMed  Google Scholar 

  51. Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). Developed in collaboration with the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52:e143–263. https://doi.org/10.1016/j.jacc.2008.10.001.

    Article  PubMed  Google Scholar 

  52. Vongpatanasin W, Brickner ME, Hillis LD, Lange RA. The Eisenmenger syndrome in adults. Ann Intern Med. 1998;128:745–55. https://doi.org/10.7326/0003-4819-128-9-199805010-00008.

    Article  CAS  PubMed  Google Scholar 

  53. Galiè N, Beghetti M, Gatzoulis MA, Granton J, Berger RM, Lauer A, et al. Bosentan therapy in patients with Eisenmenger syndrome: a multicenter, double-blind, randomized, placebo-controlled study. Circulation. 2006;114:48–54. https://doi.org/10.1161/CIRCULATIONAHA.106.630715.

    Article  PubMed  Google Scholar 

  54. Gatzoulis MA, Beghetti M, Galiè N, Granton J, Berger RM, Lauer A, et al. Longer-term bosentan therapy improves functional capacity in Eisenmenger syndrome: results of the BREATHE-5 open-label extension study. Int J Cardiol. 2008;127:27–32. https://doi.org/10.1016/j.ijcard.2007.04.078.

    Article  PubMed  Google Scholar 

  55. Mukhopadhyay S, Sharma M, Ramakrishnan S, Yusuf J, Gupta MD, Bhamri N, et al. Phosphodiesterase-5 inhibitor in Eisenmenger syndrome: a preliminary observational study. Circulation. 2006;114:1807–10. https://doi.org/10.1161/CIRCULATIONAHA.105.603001.

    Article  CAS  PubMed  Google Scholar 

  56. Zuckerman WA, Leaderer D, Rowan CA, Mituniewicz JD, Rosenzweig EB. Ambrisentan for pulmonary arterial hypertension due to congenital heart disease. Am J Cardiol. 2011;107:1381–5. https://doi.org/10.1016/j.amjcard.2010.12.051.

    Article  CAS  PubMed  Google Scholar 

  57. Rosenzweig EB, Kerstein D, Barst RJ. Long-term prostacyclin for pulmonary hypertension with associated congenital heart defects. Circulation. 1999;99:1858–65. https://doi.org/10.1161/01.CIR.99.14.1858.

    Article  CAS  PubMed  Google Scholar 

  58. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900. https://doi.org/10.1016/S0735-1097(02)01886-7.

    Article  PubMed  Google Scholar 

  59. Geva T. Repaired tetralogy of Fallot: the roles of cardiovascular magnetic resonance in evaluating pathophysiology and for pulmonary valve replacement decision support. J Cardiovasc Magn Reson. 2011;13:9. https://doi.org/10.1186/1532-429X-13-9.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Valente AM, Cook S, Festa P, Ko HH, Krishnamurthy R, Taylor AM, et al. Multimodality imaging guidelines for patients with repaired tetralogy of Fallot: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance and the Society for Pediatric Radiology. J Am Soc Echocardiogr. 2014;27:111–41. https://doi.org/10.1016/j.echo.2013.11.009.

    Article  PubMed  Google Scholar 

  61. Di Salvo TG, Mathier M, Semigran MJ, Dec GW. Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol. 1995;25:1143–53. https://doi.org/10.1016/0735-1097(94)00511-N.

    Article  PubMed  Google Scholar 

  62. Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 2001;37:183–8. https://doi.org/10.1016/S0735-1097(00)01102-5.

    Article  CAS  PubMed  Google Scholar 

  63. Hoeper MM, Lam CS, Vachiery JL, Bauersachs J, Gerges C, Lang IM, et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a plea for proper phenotyping and further research. Eur Heart J. 2017;38:2869–73. https://doi.org/10.1093/eurheartj/ehw597.

    Article  PubMed  Google Scholar 

  64. Gorter TM, van Veldhuisen DJ, Bauersachs J, Borlaug BA, Celutkiene J, Coats AJS, et al. Right heart dysfunction and failure in heart failure with preserved ejection fraction: mechanisms and management. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2017;20:16–37. https://doi.org/10.1002/ejhf.1029.

    Article  PubMed  Google Scholar 

  65. Field ME, Solomon SD, Lewis EF, Kramer DB, Baughman KL, Stevenson LW, et al. Right ventricular dysfunction and adverse outcome in patients with advanced heart failure. J Card Fail. 2006;12:616–20. https://doi.org/10.1016/j.cardfail.2006.06.472.

    Article  PubMed  Google Scholar 

  66. Kjaergaard J, Akkan D, Iversen KK, Køber L, Torp-Pedersen C, Hassager C. Right ventricular dysfunction as an independent predictor of short- and long-term mortality in patients with heart failure. Eur J Heart Fail. 2007;9:610–6. https://doi.org/10.1016/j.ejheart.2007.03.001.

    Article  PubMed  Google Scholar 

  67. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–200. https://doi.org/10.1093/eurheartj/ehw128.

    Article  PubMed  Google Scholar 

  68. Massie B, Kramer BL, Topic N, Henderson SG. Hemodynamic and radionuclide effects of acute captopril therapy for heart failure: changes in left and right ventricular volumes and function at rest and during exercise. Circulation. 1982;65:1374–81.

    Article  CAS  PubMed  Google Scholar 

  69. Quaife RA, Christian PE, Gilbert EM, Datz FL, Volkman K, Bristow MR. Effects of carvedilol on right ventricular function in chronic heart failure. Am J Cardiol. 1998;81:247–50. https://doi.org/10.1016/S0002-9149(97)00874-6.

    Article  CAS  PubMed  Google Scholar 

  70. Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117:1717–31. https://doi.org/10.1161/CIRCULATIONAHA.107.653584.

    Article  PubMed  Google Scholar 

  71. Komajda M, Lam CS. Heart failure with preserved ejection fraction: a clinical dilemma. Eur Heart J. 2014;35:1022–32. https://doi.org/10.1093/eurheartj/ehu067.

    Article  CAS  PubMed  Google Scholar 

  72. Gorter TM, Hoendermis ES, van Veldhuisen DJ, Voors AA, Lam CS, Geelhoed B, et al. Right ventricular dysfunction in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Eur J Heart Fail. 2016;18:1472–87. https://doi.org/10.1002/ejhf.630.

    Article  PubMed  Google Scholar 

  73. Melenovsky V, Hwang SJ, Lin G, Redfield MM, Borlaug BA. Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J. 2014;35:3452–62. https://doi.org/10.1093/eurheartj/ehu193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Redeld MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL, Lewis G, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013;309:1268–77. https://doi.org/10.1001/jama.2013.2024.

    Article  CAS  Google Scholar 

  75. Hoendermis ES, Liu LC, Hummel YM, van der Meer P, de Boer RA, Berger RM, et al. Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial. Eur Heart J. 2015;36:2565–73. https://doi.org/10.1093/eurheartj/ehv336.

    Article  CAS  PubMed  Google Scholar 

  76. Pieske B, Maggioni AP, Lam CS, Pieske-Kraigher E, Filippatos G, Butler J, et al. Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur Heart J. 2017;38:1119–27. https://doi.org/10.1093/eurheartj/ehw593.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Van Veldhuisen DJ, Cohen-Solal A, Bohm M, Anker SD, Babalis D, Roughton M, et al. Beta-blockade with nebivolol in elderly heart failure patients with impaired and preserved left ventricular ejection fraction: data from SENIORS (Study of Effects of Nebivolol Intervention on Outcomes and Rehospitalization in Seniors With Heart Failure). J Am Coll Cardiol. 2009;53:2150–8. https://doi.org/10.1016/jjacc200902.046.

    Article  PubMed  Google Scholar 

  78. Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet. 2003;362:777–81. https://doi.org/10.1016/S0140-6736(03)14285-7.

    Article  CAS  PubMed  Google Scholar 

  79. Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359:2456–67. https://doi.org/10.1056/NEJMoa0805450.

    Article  CAS  PubMed  Google Scholar 

  80. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370:1383–92. https://doi.org/10.1056/NEJMoa1313731.

    Article  CAS  PubMed  Google Scholar 

  81. Wan SH, Stevens SR, Borlaug BA, Anstrom KJ, Deswal A, Felker GM, et al. Differential response to low-dose dopamine or low-dose nesiritide in acute heart failure with reduced or preserved ejection fraction: results from the ROSE AHF Trial (Renal Optimization Strategies Evaluation in Acute Heart Failure). Circ Heart Fail. 2016;9:e002593. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002593.

    Article  CAS  PubMed  Google Scholar 

  82. Sharma K, Vaishnav J, Kalathiya R, Miller J, Shah N, Hill T, et al. Randomized Evaluation of Heart Failure with Preserved Ejection Fraction Patients with Acute Heart Failure and Dopamine (Ropa-Dop) Trial. J Card Fail. 2017;23:831. https://doi.org/10.1016/j.cardfail.2017.10.006.

    Article  Google Scholar 

  83. Jenkins D, Mayer E, Screaton N, Madani M. State-of-the-art chronic thromboembolic pulmonary hypertension diagnosis and management. Eur Respir Rev. 2012;21:32–9. https://doi.org/10.1183/09059180.00009211.

    Article  CAS  PubMed  Google Scholar 

  84. Mayer E, Jenkins D, Lindner J, D’Armini A, Kloek J, Meyns B, et al. Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry. J Thorac Cardiovasc Surg. 2011;141:702–10. https://doi.org/10.1016/j.jtcvs.2010.11.024.

    Article  PubMed  Google Scholar 

  85. Kataoka M, Inami T, Hayashida K, Shimura N, Ishiguro H, Abe T, et al. Percutaneous transluminal pulmonary angioplasty for the treatment of chronic thromboembolic pulmonary hypertension. Circ Cardiovasc Interv. 2012;5:756–62. https://doi.org/10.1161/CIRCINTERVENTIONS.112.971390.

    Article  PubMed  Google Scholar 

  86. Ghofrani HA, D’Armini AM, Grimminger F, Hoeper MM, Jansa P, Kim NH, et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013;369:319–29. https://doi.org/10.1056/NEJMoa1209657.

    Article  CAS  PubMed  Google Scholar 

  87. Kirklin JK, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, et al. Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J Heart Lung Transplant. 2017;36:1080–6. https://doi.org/10.1016/j.healun.2017.07.005.

    Article  PubMed  Google Scholar 

  88. Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant. 2015;34:1123–30. https://doi.org/10.1016/j.healun.2015.06.015.

    Article  PubMed  Google Scholar 

  89. Argiriou M, Kolokotron SM, Sakellaridis T, Argiriou O, Charitos C, Zarogoulidis P, et al. Right heart failure post left ventricular assist device implantation. J Thorac Dis. 2014;6(Suppl 1):S52–9. https://doi.org/10.3978/j.issn.2072-1439.2013.10.26.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). Appendix A: adverse event definitions: adult and pediatric patients (2013). Available at http://www.uab.edu/medicine/ intermacs/appendices-4-0/appendix-a-4-0.

  91. Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32:157–87. https://doi.org/10.1016/j.healun.2012.09.013.

    Article  PubMed  Google Scholar 

  92. Goldstein DJ, Beuford RB. Left ventricular assist devices and bleeding: adding insult to injury. Ann Thorac Surg. 2003;75:S42–7.

    Article  PubMed  Google Scholar 

  93. Baumwol J, Macdonald PS, Keogh AM, Kotlyar E, Spratt P, Jansz P, et al. Right heart failure and “failure to thrive” after left ventricular assist device: clinical predictors and outcomes. J Heart Lung Transplant. 2011;30:888–95. https://doi.org/10.1016/j.healun.2011.03.006.

    Article  PubMed  Google Scholar 

  94. Tsiouris A, Paone G, Brewer RJ, Nemeh HW, Borgi J, Morgan JA. Outcomes of patients with right ventricular failure on milrinone after left ventricular assist device implantation. ASAIO J. 2015;61:133–8. https://doi.org/10.1097/MAT.0000000000000188.

    Article  PubMed  Google Scholar 

  95. Sabato LA, Salerno DM, Moretz JD, Jennings DL. Inhaled pulmonary vasodilator therapy for management of right ventricular dysfunction after left ventricular assist device placement and cardiac transplantation. Pharmacotherapy. 2017;37:944–55. https://doi.org/10.1002/phar.1959.

    Article  CAS  PubMed  Google Scholar 

  96. Argenziano M, Choudhri AF, Moazami N, Rose EA, Smith CR, Levin HR, et al. Randomized, double-blind trial of inhaled nitric oxide in LVAD recipients with pulmonary hypertension. Ann Thorac Surg. 1998;65(2):340–5. https://doi.org/10.1016/S0003-4975(97)01307-6.

    Article  CAS  PubMed  Google Scholar 

  97. Potapov E, Meyer D, Swaminathan M, Ramsay M, El Banayosy A, Diehl C, et al. Inhaled nitric oxide after left ventricular assist device implantation: a prospective, randomized, double-blind, multicenter, placebo-controlled trial. J Heart Lung Transplant. 2011;30:870–8. https://doi.org/10.1016/j.healun.2011.03.005.

    Article  PubMed  Google Scholar 

  98. Groves DS, Blum FE, Huffmyer JL, Kennedy JL, Ahmad HB, Durieux ME, et al. Effects of early inhaled epoprostenol therapy on pulmonary artery pressure and blood loss during LVAD placement. J Cardiothorac Vasc Anesth. 2014;28:652–60. https://doi.org/10.1053/j.jvca.2013.05.028.

    Article  CAS  PubMed  Google Scholar 

  99. Critoph C, Green G, Hayes H, Baumwol J, Lam K, Larbalestier R, et al. Clinical outcomes of patients treated with pulmonary vasodilators early and in high dose after left ventricular assist device implantation. Artif Organs. 2016;40:106–14. https://doi.org/10.1111/aor.12502.

    Article  CAS  PubMed  Google Scholar 

  100. Haglund NA, Burdorf A, Jones T, Shostrom V, Um J, Ryan T, et al. Inhaled milrinone after left ventricular assist device implantation. J Card Fail. 2015;21:792–7. https://doi.org/10.1016/j.cardfail.2015.04.011.

    Article  CAS  PubMed  Google Scholar 

  101. Green EM, Givertz MM. Management of acute right ventricular failure in the intensive care unit. Curr Heart Fail Rep. 2012;9:228–35. https://doi.org/10.1007/s11897-012-0104-x.

    Article  PubMed  Google Scholar 

  102. Piazza G, Goldhaber SZ. The acutely decompensated right ventricle: pathways for diagnosis and management. Chest. 2005;128(3):1836–52. https://doi.org/10.1378/chest.128.3.1836.

    Article  PubMed  Google Scholar 

  103. Ferrario M, Poli A, Previtali M, Lanzarini L, Fetiveau R, Diotallevi P, et al. Hemodynamics of volume loading compared with dobutamine in severe right ventricular infarction. Am J Cardiol. 1994;74:329–33. https://doi.org/10.1016/0002-9149(94)90398-0.

    Article  CAS  PubMed  Google Scholar 

  104. Cuffe MS, Califf RM, Adams KF Jr, Benza R, Bourge R, Colucci WS, et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA. 2002;287(12):1541–7. https://doi.org/10.1001/jama.287.12.1541.

    Article  CAS  PubMed  Google Scholar 

  105. Shishehbor MH, Moazami N, Tong MZ, Unai S, Tang WH, Soltesz EG. Cardiogenic shock: from ECMO to Impella and beyond. Cleve Clin J Med. 2017;84:287–95. https://doi.org/10.3949/ccjm.84gr.17002.

    Article  PubMed  Google Scholar 

  106. Khani-Hanjani A, Loor G, Chamogeorgakis T, Shafii A, Mountis M, Hanna M, et al. Case series using the ROTAFLOW system as a temporary right ventricular assist device after HeartMate II implantation. ASAIO J. 2013;59:456–60. https://doi.org/10.1097/MAT.0b013e318291d133.

    Article  PubMed  Google Scholar 

  107. Bhama JK, Kormos RL, Toyoda Y, Teuteberg JJ, McCurry KR, Siegenthaler MP. Clinical experience using the Levitronix CentriMag system for temporary right ventricular mechanical circulatory support. J Heart Lung Transplant. 2009;28:971–6. https://doi.org/10.1016/j.healun.2009.04.015.

    Article  PubMed  Google Scholar 

  108. John R, Long JW, Massey HT, Griffith BP, Sun BC, Tector AJ, et al. Outcomes of a multicenter trial of the Levitronix CentriMag ventricular assist system for short-term circulatory support. J Thorac Cardiovasc Surg. 2011;141:932–9. https://doi.org/10.1016/jjtcvs201003.046.

    Article  PubMed  Google Scholar 

  109. Anderson MB, Goldstein J, Milano C, Morris LD, Kormos RL, Bhama J, et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: the prospective RECOVER RIGHT study of the Impella RP device. J Heart Lung Transplant. 2015;34:1549–60. https://doi.org/10.1016/j.healun.2015.08.018.

    Article  PubMed  Google Scholar 

  110. Reddy S, Bernstein D. Molecular mechanisms of right ventricular failure. Circulation. 2015;132(18):1734–42. https://doi.org/10.1161/CIRCULATIONAHA.114.012975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Piao L, Marsboom G, Archer SL. Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure. J Mol Med. 2010;88:1011–20. https://doi.org/10.1007/s00109-010-0679-1.

    Article  CAS  PubMed  Google Scholar 

  112. Urashima T, Zhao M, Wagner R, Fajardo G, Farahani S, Quertermous T, et al. Molecular and physiological characterization of RV remodeling in a murine model of pulmonary stenosis. Am J Physiol Heart Circ Physiol. 2008;295:H1351–68. https://doi.org/10.1152/ajpheart.91526.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ardehali H, Sabbah HN, Burke MA, Sarma S, Liu PP, Cleland JGF, et al. Targeting myocardial substrate metabolism in heart failure: potential for new therapies. Eur J Heart Fail. 2012;14:120–9. https://doi.org/10.1093/eurjhf/hfr173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Steggall A, Mordi IR, Lang CC. Targeting metabolic modulation and mitochondrial dysfunction in the treatment of heart failure. Diseases. 2017;5(2):14. https://doi.org/10.3390/diseases5020014.

    Article  PubMed Central  CAS  Google Scholar 

  115. Liles JT, Hoyer K, Oliver J, Chi L, Dhalla AK, Belardinelli L. Ranolazine reduces cardiac remodeling in PAH rats. J Pharmacol Exp Ther. 2015;353(3):480–9. https://doi.org/10.1124/jpet.114.221861.

    Article  CAS  PubMed  Google Scholar 

  116. Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L, et al. Metabolic modulation with perhexiline in chronic heart failure a randomized, controlled trial of short-term use of a novel treatment. Circulation. 2005;112:3280–8. https://doi.org/10.1161/CIRCULATIONAHA.105.551457.

    Article  CAS  PubMed  Google Scholar 

  117. Nagendran J, Gurtu V, Fu DZ, Dyck JR, Haromy A, Ross DB, et al. A dynamic and chamber-specific mitochondrial remodeling in right ventricular hypertrophy can be therapeutically targeted. J Thorac Cardiovasc Surg. 2008;136:168–78. https://doi.org/10.1016/j.jtcvs.2008.01.040.

    Article  PubMed  Google Scholar 

  118. Bayeva M, Gheorghiade M, Ardehali H. Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol. 2013;61(6):599–610. https://doi.org/10.1016/j.jacc.2012.08.1021.

    Article  CAS  PubMed  Google Scholar 

  119. Rosca MG, Tandler B, Hoppel CL. Mitochondria in cardiac hypertrophy and heart failure. J Mol Cell Cardiol. 2013;55:31–41. https://doi.org/10.1016/j.yjmcc.2012.09.002.

    Article  CAS  PubMed  Google Scholar 

  120. Ecarnot-Laubriet A, Rochette L, Vergely C, Sicard P, Teyssier JR. The activation pattern of the antioxidant enzymes in the right ventricle of rat in response to pressure overload is of heart failure type. Heart Dis. 2003;5:308–12. https://doi.org/10.1097/01.hdx.0000089836.03515.a9.

    Article  CAS  PubMed  Google Scholar 

  121. Szeto HH, Birk AV. Serendipity and the discovery of novel compounds that restore mitochondrial plasticity. Clin Pharmacol Ther. 2014;96:672–83. https://doi.org/10.1038/clpt.2014.174.

    Article  CAS  PubMed  Google Scholar 

  122. Sabbah HN, Gupta RC, Kohli S, Wang M, Hachem S, Zhang K. Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ Heart Fail. 2016;9:e002206. https://doi.org/10.1161/CIRCHEARTFAILURE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Brown DA, Hale SL, Baines CP, del Rio CL, Hamlin RL, Yueyama Y, et al. Reduction of early reperfusion injury with the mitochondria-targeting peptide bendavia. J Cardiovasc Pharmacol Ther. 2014;19:121–32. https://doi.org/10.1177/1074248413508003.

    Article  CAS  PubMed  Google Scholar 

  124. Maxwell PH, Pugh CW, Ratcliffe PJ. Activation of the HIF pathway in cancer. Curr Opin Genet Dev. 2001;11:293–9. https://doi.org/10.1016/S0959-437X(00)00193-3.

    Article  CAS  PubMed  Google Scholar 

  125. Choi YH, Cowan DB, Nathan M, Poutias D, Stamm C, del Nido PJ, et al. Myocardial hypertrophy overrides the angiogenic response to hypoxia. PLoS One. 2008;3:e4042. https://doi.org/10.1371/journal.pone.0004042.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D, Smithson L, et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation. 2009;120:1951–60. https://doi.org/10.1161/CIRCULATIONAHA.109.883843.

    Article  PubMed  Google Scholar 

  127. Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation. 2015;131:550–9. https://doi.org/10.1161/CIRCULATIONAHA.114.009625.

    Article  PubMed  Google Scholar 

  128. Oka T, Akazawa H, Naito AT, Komuro I. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ Res. 2014;114:565–71. https://doi.org/10.1161/CIRCRESAHA.114.300507.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Wilson Tang.

Ethics declarations

Conflict of Interest

Weiqin Lin and Ai-Ling Poh declare that they have no conflicts of interest. W.H. Wilson Tang reports personal fees from The Advisory Board Company, personal fees from Springer, and grants from the National Institutes of Health, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pharmacologic Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W., Poh, AL. & Tang, W.H.W. Novel Insights and Treatment Strategies for Right Heart Failure. Curr Heart Fail Rep 15, 141–155 (2018). https://doi.org/10.1007/s11897-018-0389-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-018-0389-5

Keywords

Navigation