Novel Insights and Treatment Strategies for Right Heart Failure

Pharmacologic Therapy (W.H.W. Tang, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Pharmacologic Therapy

Abstract

Purpose of Review

The function of the right ventricle (RV) is intimately linked to its preload (systemic volume status) and afterload (pulmonary vasculature). In this review, we explore current knowledge in RV physiology, RV function assessment, causes of right heart failure (RHF), and specific treatment strategies for RHF.

Recent Findings

We examine the evidence behind new pharmacological therapies available, such as macitentan and riociguat in the treatment of specific etiologies of RHF. We will also focus on RHF in the setting of heart failure with preserved ejection fraction (HFpEF) and in the presence of left ventricular assist devices (LVAD), looking at current treatment recommendations, including mechanical circulatory support. Lastly, we will look to the horizon for the latest research on RHF, including the molecular basis of RHF and potential novel treatment methods for this old yet poorly understood syndrome.

Summary

Disturbances in this complex relationship result in the clinical syndrome of RHF. Despite advances in the management of left heart diseases, much work remains to be done to understand and manage RHF.

Keywords

Right heart failure Pulmonary arterial hypertension Pulmonary venous hypertension Right heart failure post-LVAD Pulmonary vasodilator Mechanical circulatory support 

Notes

Compliance with Ethical Standards

Conflict of Interest

Weiqin Lin and Ai-Ling Poh declare that they have no conflicts of interest. W.H. Wilson Tang reports personal fees from The Advisory Board Company, personal fees from Springer, and grants from the National Institutes of Health, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    • Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, et al. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114:1883–91.  https://doi.org/10.1161/CIRCULATIONAHA.106.632208. Key scientific statement on mechanisms of right heart failure. PubMedCrossRefGoogle Scholar
  2. 2.
    Vonk Noordegraaf A, Westerhof BE, Westerhof N. The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol. 2017;69:236–43.  https://doi.org/10.1016/j.jacc.2016.10.047.PubMedCrossRefGoogle Scholar
  3. 3.
    Rain S, Handoko ML, Vonk Noordegraaf A, Bogaard HJ, van der Velden J, de Man FS. Pressure-overload-induced right heart failure. Pflugers Arch. 2014;466:1055–63.  https://doi.org/10.1007/s00424-014-1450-1.PubMedGoogle Scholar
  4. 4.
    Surkova E, Muraru D, Iliceto S, Badano LP. The use of multimodality cardiovascular imaging to assess right ventricular size and function. Int J Cardiol. 2016;214:54–69.  https://doi.org/10.1016/j.ijcard.2016.03.074.PubMedCrossRefGoogle Scholar
  5. 5.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39e14.  https://doi.org/10.1016/jecho201410.003.PubMedCrossRefGoogle Scholar
  6. 6.
    Ghio S, Pazzano AS, Klersy C, Scelsi L, Raineri C, Camporotondo R, et al. Clinical and prognostic relevance of echocardiographic evaluation of right ventricular geometry in patients with idiopathic pulmonary arterial hypertension. Am J Cardiol. 2011;107(4):628–32.  https://doi.org/10.1016/j.amjcard.2010.10.027.PubMedCrossRefGoogle Scholar
  7. 7.
    Frémont B, Pacouret G, Jacobi D, Puglisi R, Charbonnier B, de Labriolle A. Prognostic value of echocardiographic right/left ventricular end-diastolic diameter ratio in patients with acute pulmonary embolism: results from a monocenter registry of 1,416 patients. Chest. 2008;133:358–62.  https://doi.org/10.1378/chest.07-1231. PubMedCrossRefGoogle Scholar
  8. 8.
    Anavekar NS, Skali H, Bourgoun M, Ghali JK, Kober L, Maggioni AP, et al. Usefulness of right ventricular fractional area change to predict death, heart failure, and stroke following myocardial infarction (from the VALIANT ECHO study). Am J Cardiol. 2008;101:607–12.  https://doi.org/10.1016/j.amjcard.2007.09.115.PubMedCrossRefGoogle Scholar
  9. 9.
    Ghio S, Recusani F, Klersy C, Sebastiani R, Laudisa ML, Campana C, et al. Prognostic usefulness of the tricuspid annular plane systolic excursion in patients with congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am J Cardiol. 2000;85:837–42.  https://doi.org/10.1016/S0002-9149(99)00877-2.PubMedCrossRefGoogle Scholar
  10. 10.
    Tei C, Dujardin KS, Hodge DO, Bailey KR, McGoon MD, Tajik AJ, et al. Doppler echocardiographic index for assessment of global right ventricular function. J Am Soc Echocardiogr. 1996;9:838–47.PubMedCrossRefGoogle Scholar
  11. 11.
    Singbal Y, Vollbon W, Huynh LT, Wang WY, Ng AC, Wahi S. Exploring noninvasive tricuspid dP/dt as a marker of right ventricular function. Echocardiography. 2015;32:1347–51.  https://doi.org/10.1111/echo.12877.PubMedCrossRefGoogle Scholar
  12. 12.
    Meluzín J, Spinarová L, Dusek L, Toman J, Hude P, Krejcí J. Prognostic importance of the right ventricular function assessed by Doppler tissue imaging. Eur J Echocardiogr. 2003;4:262–71.  https://doi.org/10.1016/S1525-2167(02)00171-3.PubMedCrossRefGoogle Scholar
  13. 13.
    Schoepf UJ, Goldhaber SZ, Costello P. Spiral computed tomography for acute pulmonary embolism. Circulation. 2004;109:2160–7.  https://doi.org/10.1161/01.CIR.0000128813.04325.08.PubMedCrossRefGoogle Scholar
  14. 14.
    Ghaye B, Ghuysen A, Bruyere PJ, D’Orio V, Dondelinger RF. Can CT pulmonary angiography allow assessment of severity and prognosis in patients presenting with pulmonary embolism? What the radiologist needs to know. Radiographics. 2006;26(1):23–39.  https://doi.org/10.1148/rg.261055062.PubMedCrossRefGoogle Scholar
  15. 15.
    Larose E, Ganz P, Reynolds HG, Dorbala S, Di Carli MF, Brown KA, et al. Right ventricular dysfunction assessed by cardiovascular magnetic resonance imaging predicts poor prognosis late after myocardial infarction. J Am Coll Cardiol. 2007;49:855–62.  https://doi.org/10.1016/j.jacc.2006.10.056.PubMedCrossRefGoogle Scholar
  16. 16.
    Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010;121:1533–41.  https://doi.org/10.1161/CIRCULATIONAHA.108.840827.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139:1316–24.  https://doi.org/10.1016/j.jtcvs.2009.11.020.PubMedCrossRefGoogle Scholar
  18. 18.
    Lopez-Sendon J, Coma-Canella I, Gamallo C. Sensitivity and specicity of hemodynamic criteria in the diagnosis of acute right ventricular infarction. Circulation. 1981;64:515–25.PubMedCrossRefGoogle Scholar
  19. 19.
    Morine KJ, Kiernan MS, Pham DT, Paruchuri V, Denofrio D, Kapur NK. Pulmonary artery pulsatility index is associated with right ventricular failure after left ventricular assist device surgery. J Card Fail. 2016;22:110–6.  https://doi.org/10.1016/j.cardfail.2015.10.019.PubMedCrossRefGoogle Scholar
  20. 20.
    Korabathina R, Heffernan KS, Paruchuri V, Patel AR, Mudd JO, Prutkin JM, et al. The pulmonary artery pulsatility index identifies severe right ventricular dysfunction in acute inferior myocardial infarction. Catheter Cardiovasc Interv. 2012;80:593–600.  https://doi.org/10.1002/ccd.23309.PubMedCrossRefGoogle Scholar
  21. 21.
    Dupont M, Mullens W, Skouri HN, Abrahams Z, Wu Y, Taylor DO, et al. Prognostic role of pulmonary arterial capacitance in advanced heart failure. Circ Heart Fail. 2012;5:778–85.  https://doi.org/10.1161/CIRCHEARTFAILURE.112.968511.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Claussen J, Turkbey EB, Williams R, et al. Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson. 2015;17:29.  https://doi.org/10.1186/s12968-015-0111-7.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kapur NK, Esposito ML, Bader Y, Morine KJ, Kiernan MS, Pham DT, et al. Mechanical circulatory support devices for acute right ventricular failure. Circulation. 2017;136:314–26.  https://doi.org/10.1161/CIRCULATIONAHA.116.025290.PubMedCrossRefGoogle Scholar
  24. 24.
    Turkoglu S, Erden M, Ozdemir M. Isolated right ventricular infarction due to occlusion of the right ventricular branch in the absence of percutaneous coronary intervention. Can J Cardiol. 2008;24:793–4.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Van der Bolt CL, Vermeersch PH, Plokker HW. Isolated acute occlusion of a large right ventricular branch of the right coronary artery following coronary balloon angioplasty: the only true “model” to study ECG changes in acute, isolated right ventricular infarction. Eur Heart J. 1996;17:247–50.  https://doi.org/10.1093/oxfordjournals.eurheartj.a014841.PubMedCrossRefGoogle Scholar
  26. 26.
    Corrado D, Basso C, Judge DP. Arrhythmogenic cardiomyopathy. Circ Res. 2017;121:784–802.  https://doi.org/10.1161/CIRCRESAHA.117.309345.PubMedCrossRefGoogle Scholar
  27. 27.
    Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37:67–119.  https://doi.org/10.1093/eurheartj/ehv317.PubMedCrossRefGoogle Scholar
  28. 28.
    • Harjola VP, Mebazaa A, Čelutkienė J, Bettex D, Bueno H, Chioncel O, et al. Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur J Heart Fail. 2016;18:226–41.  https://doi.org/10.1002/ejhf.478. European working group scientific statement on acute right heart failure, outlining support strategies in acute setting. PubMedCrossRefGoogle Scholar
  29. 29.
    Verbrugge FH, Dupont M, Steels P, Grieten L, Malbrain M, Tang WH, et al. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol. 2013;62(6):485–95.  https://doi.org/10.1016/j.jacc.2013.04.070.PubMedCrossRefGoogle Scholar
  30. 30.
    Mullens W, Abrahams Z, Skouri HN, Francis GS, Taylor DO, Starling RC, et al. Elevated intra-abdominal pressure in acute decompensated heart failure: a potential contributor to worsening renal function? J Am Coll Cardiol. 2008;51:300–6.  https://doi.org/10.1016/j.jacc.2007.09.043.PubMedCrossRefGoogle Scholar
  31. 31.
    van Veldhuisen DJ, Anker SD, Ponikowski P, Macdougall IC. Anemia and iron deficiency in heart failure: mechanisms and therapeutic approaches. Nat Rev Cardiol. 2011;8:485–93.  https://doi.org/10.1038/nrcardio.2011.77.PubMedCrossRefGoogle Scholar
  32. 32.
    van der Meer P, Lok DJ, Januzzi JL, de la Porte PW, Lipsic E, van Wijngaarden J, et al. Adequacy of endogenous erythropoietin levels and mortality in anaemic heart failure patients. Eur Heart J. 2008;29:1510–5.  https://doi.org/10.1093/eurheartj/ehn205.PubMedCrossRefGoogle Scholar
  33. 33.
    Ghio S, Klersy C, Magrini G, D'Armini AM, Scelsi L, Raineri C, et al. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int J Cardiol. 2010;140:272–8.  https://doi.org/10.1016/j.ijcard.2008.11.051.PubMedCrossRefGoogle Scholar
  34. 34.
    Fine NM, Chen L, Bastiansen PM, Frantz RP, Pellikka PA, Oh JK, et al. Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imaging. 2013;6:711–21.  https://doi.org/10.1161/CIRCIMAGING.113.000640.PubMedCrossRefGoogle Scholar
  35. 35.
    Sitbon O, Humbert M, Jaïs X, Ioos V, Hamid AM, Provencher S, et al. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation. 2005;111:3105–11.  https://doi.org/10.1161/CIRCULATIONAHA.104.488486.PubMedCrossRefGoogle Scholar
  36. 36.
    Olschewski H, Simonneau G, Galiè N, Higenbottam T, Naeije R, Rubin LJ, et al. Inhaled iloprost in severe pulmonary hypertension. N Engl J Med. 2002;347:322–9.  https://doi.org/10.1056/NEJMoa020204.PubMedCrossRefGoogle Scholar
  37. 37.
    Jing ZC, Parikh K, Pulido T, Jerjes-Sanchez C, White RJ, Allen R, et al. Efficacy and safety of oral treprostinil monotherapy for the treatment of pulmonary arterial hypertension: a randomized, controlled trial. Circulation. 2013;127:624–33.  https://doi.org/10.1161/CIRCULATIONAHA.112.124388.PubMedCrossRefGoogle Scholar
  38. 38.
    Barst RJ, Rubin LJ, Long WA, McGoon MD, Rich S, Badesch DB, et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. N Engl J Med. 1996;334:296–301.  https://doi.org/10.1056/NEJM199602013340504. PubMedCrossRefGoogle Scholar
  39. 39.
    Galiè N, Ghofrani HA, Torbicki A, Barst RJ, Rubin LJ, Badesch D, et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 2005;353:2148–57.  https://doi.org/10.1056/NEJMoa050010. PubMedCrossRefGoogle Scholar
  40. 40.
    Galiè N, Brundage BH, Ghofrani HA, Oudiz RJ, Simonneau G, Safdar Z, et al. Tadalafil therapy for pulmonary arterial hypertension. Circulation. 2009;119:2894–903.  https://doi.org/10.1161/CIRCULATIONAHA.108.839274.PubMedCrossRefGoogle Scholar
  41. 41.
    Channick RN, Simonneau G, Sitbon O, Robbins IM, Frost A, Tapson VF, et al. Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study. Lancet. 2001;358:1119–23.  https://doi.org/10.1016/S0140-6736(01)06250-X.PubMedCrossRefGoogle Scholar
  42. 42.
    Rubin LJ, Badesch DB, Barst RJ, Galie N, Black CM, Keogh A, et al. Bosentan therapy for pulmonary arterial hypertension. N Engl J Med. 2002;346:896–903.  https://doi.org/10.1056/NEJMoa012212.PubMedCrossRefGoogle Scholar
  43. 43.
    Galiè N, Olschewski H, Oudiz RJ, Torres F, Frost A, Ghofrani HA, et al. Ambrisentan for the treatment of pulmonary arterial hypertension. Results of the ambrisentan in pulmonary arterial hypertension, randomized, double-blind, placebo-controlled, multicenter, efficacy (ARIES) study 1 and 2. Circulation. 2008;117:3010–9.  https://doi.org/10.1161/CIRCULATIONAHA.107.742510.PubMedCrossRefGoogle Scholar
  44. 44.
    Pulido T, Adzerikho I, Channick RN, Delcroix M, Galiè N, Ghofrani HA, et al. Macitentan and morbidity and mortality in pulmonary arterial hypertension. N Engl J Med. 2013;369:809–18.  https://doi.org/10.1056/NEJMoa1213917.PubMedCrossRefGoogle Scholar
  45. 45.
    Ghofrani HA, Galiè N, Grimminger F, Grunig E, Humbert M, Jing ZC, et al. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med. 2013;369:330–40.  https://doi.org/10.1056/NEJMoa1209655.PubMedCrossRefGoogle Scholar
  46. 46.
    Sitbon O, Channick R, Chin KM, Frey A, Gaine S, Galiè N, et al. Selexipag for the treatment of pulmonary arterial hypertension. N Engl J Med. 2015;373:2522–33.  https://doi.org/10.1056/NEJMoa1503184.PubMedCrossRefGoogle Scholar
  47. 47.
    Kemp K, Savale L, O’Callaghan DS, Jaïs X, Montani D, Humbert M, et al. Usefulness of first-line combination therapy with epoprostenol and bosentan in pulmonary arterial hypertension: an observational study. J Heart Lung Transplant. 2012;31:150–8.  https://doi.org/10.1016/j.healun.2011.11.002.PubMedCrossRefGoogle Scholar
  48. 48.
    Sitbon O, Jaïs X, Savale L, Cottin V, Bergot E, Macari EA, et al. Upfront triple combination therapy in pulmonary arterial hypertension: a pilot study. Eur Respir J. 2014;43:1691–7.  https://doi.org/10.1183/09031936.00116313.PubMedCrossRefGoogle Scholar
  49. 49.
    Galiè N, Barberà JA, Frost AE, Ghofrani HA, Hoeper MM, McLaughlin VV, et al. Initial use of ambrisentan plus tadalafil in pulmonary arterial hypertension. N Engl J Med. 2015;373:834–44.  https://doi.org/10.1056/NEJMoa1413687.PubMedCrossRefGoogle Scholar
  50. 50.
    Baumgartner H, Bonhoeffer P, De Groot NM, de Haan F, Deanfield JE, Galie N, et al. ESC guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J. 2010;31:2915–57.  https://doi.org/10.1093/eurheartj/ehq249.PubMedCrossRefGoogle Scholar
  51. 51.
    Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). Developed in collaboration with the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52:e143–263.  https://doi.org/10.1016/j.jacc.2008.10.001.PubMedCrossRefGoogle Scholar
  52. 52.
    Vongpatanasin W, Brickner ME, Hillis LD, Lange RA. The Eisenmenger syndrome in adults. Ann Intern Med. 1998;128:745–55.  https://doi.org/10.7326/0003-4819-128-9-199805010-00008.PubMedCrossRefGoogle Scholar
  53. 53.
    Galiè N, Beghetti M, Gatzoulis MA, Granton J, Berger RM, Lauer A, et al. Bosentan therapy in patients with Eisenmenger syndrome: a multicenter, double-blind, randomized, placebo-controlled study. Circulation. 2006;114:48–54.  https://doi.org/10.1161/CIRCULATIONAHA.106.630715. PubMedCrossRefGoogle Scholar
  54. 54.
    Gatzoulis MA, Beghetti M, Galiè N, Granton J, Berger RM, Lauer A, et al. Longer-term bosentan therapy improves functional capacity in Eisenmenger syndrome: results of the BREATHE-5 open-label extension study. Int J Cardiol. 2008;127:27–32.  https://doi.org/10.1016/j.ijcard.2007.04.078.PubMedCrossRefGoogle Scholar
  55. 55.
    Mukhopadhyay S, Sharma M, Ramakrishnan S, Yusuf J, Gupta MD, Bhamri N, et al. Phosphodiesterase-5 inhibitor in Eisenmenger syndrome: a preliminary observational study. Circulation. 2006;114:1807–10.  https://doi.org/10.1161/CIRCULATIONAHA.105.603001.PubMedCrossRefGoogle Scholar
  56. 56.
    Zuckerman WA, Leaderer D, Rowan CA, Mituniewicz JD, Rosenzweig EB. Ambrisentan for pulmonary arterial hypertension due to congenital heart disease. Am J Cardiol. 2011;107:1381–5.  https://doi.org/10.1016/j.amjcard.2010.12.051.PubMedCrossRefGoogle Scholar
  57. 57.
    Rosenzweig EB, Kerstein D, Barst RJ. Long-term prostacyclin for pulmonary hypertension with associated congenital heart defects. Circulation. 1999;99:1858–65.  https://doi.org/10.1161/01.CIR.99.14.1858.PubMedCrossRefGoogle Scholar
  58. 58.
    Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.  https://doi.org/10.1016/S0735-1097(02)01886-7.PubMedCrossRefGoogle Scholar
  59. 59.
    Geva T. Repaired tetralogy of Fallot: the roles of cardiovascular magnetic resonance in evaluating pathophysiology and for pulmonary valve replacement decision support. J Cardiovasc Magn Reson. 2011;13:9.  https://doi.org/10.1186/1532-429X-13-9.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Valente AM, Cook S, Festa P, Ko HH, Krishnamurthy R, Taylor AM, et al. Multimodality imaging guidelines for patients with repaired tetralogy of Fallot: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance and the Society for Pediatric Radiology. J Am Soc Echocardiogr. 2014;27:111–41.  https://doi.org/10.1016/j.echo.2013.11.009.PubMedCrossRefGoogle Scholar
  61. 61.
    Di Salvo TG, Mathier M, Semigran MJ, Dec GW. Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol. 1995;25:1143–53.  https://doi.org/10.1016/0735-1097(94)00511-N.PubMedCrossRefGoogle Scholar
  62. 62.
    Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 2001;37:183–8.  https://doi.org/10.1016/S0735-1097(00)01102-5.PubMedCrossRefGoogle Scholar
  63. 63.
    Hoeper MM, Lam CS, Vachiery JL, Bauersachs J, Gerges C, Lang IM, et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a plea for proper phenotyping and further research. Eur Heart J. 2017;38:2869–73.  https://doi.org/10.1093/eurheartj/ehw597.PubMedGoogle Scholar
  64. 64.
    Gorter TM, van Veldhuisen DJ, Bauersachs J, Borlaug BA, Celutkiene J, Coats AJS, et al. Right heart dysfunction and failure in heart failure with preserved ejection fraction: mechanisms and management. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2017;20:16–37.  https://doi.org/10.1002/ejhf.1029.PubMedCrossRefGoogle Scholar
  65. 65.
    Field ME, Solomon SD, Lewis EF, Kramer DB, Baughman KL, Stevenson LW, et al. Right ventricular dysfunction and adverse outcome in patients with advanced heart failure. J Card Fail. 2006;12:616–20.  https://doi.org/10.1016/j.cardfail.2006.06.472.PubMedCrossRefGoogle Scholar
  66. 66.
    Kjaergaard J, Akkan D, Iversen KK, Køber L, Torp-Pedersen C, Hassager C. Right ventricular dysfunction as an independent predictor of short- and long-term mortality in patients with heart failure. Eur J Heart Fail. 2007;9:610–6.  https://doi.org/10.1016/j.ejheart.2007.03.001.PubMedCrossRefGoogle Scholar
  67. 67.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–200.  https://doi.org/10.1093/eurheartj/ehw128. PubMedCrossRefGoogle Scholar
  68. 68.
    Massie B, Kramer BL, Topic N, Henderson SG. Hemodynamic and radionuclide effects of acute captopril therapy for heart failure: changes in left and right ventricular volumes and function at rest and during exercise. Circulation. 1982;65:1374–81.PubMedCrossRefGoogle Scholar
  69. 69.
    Quaife RA, Christian PE, Gilbert EM, Datz FL, Volkman K, Bristow MR. Effects of carvedilol on right ventricular function in chronic heart failure. Am J Cardiol. 1998;81:247–50.  https://doi.org/10.1016/S0002-9149(97)00874-6.PubMedCrossRefGoogle Scholar
  70. 70.
    Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117:1717–31.  https://doi.org/10.1161/CIRCULATIONAHA.107.653584.PubMedCrossRefGoogle Scholar
  71. 71.
    Komajda M, Lam CS. Heart failure with preserved ejection fraction: a clinical dilemma. Eur Heart J. 2014;35:1022–32.  https://doi.org/10.1093/eurheartj/ehu067.PubMedCrossRefGoogle Scholar
  72. 72.
    Gorter TM, Hoendermis ES, van Veldhuisen DJ, Voors AA, Lam CS, Geelhoed B, et al. Right ventricular dysfunction in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Eur J Heart Fail. 2016;18:1472–87.  https://doi.org/10.1002/ejhf.630.PubMedCrossRefGoogle Scholar
  73. 73.
    Melenovsky V, Hwang SJ, Lin G, Redfield MM, Borlaug BA. Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J. 2014;35:3452–62.  https://doi.org/10.1093/eurheartj/ehu193.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Redeld MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL, Lewis G, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013;309:1268–77.  https://doi.org/10.1001/jama.2013.2024.CrossRefGoogle Scholar
  75. 75.
    Hoendermis ES, Liu LC, Hummel YM, van der Meer P, de Boer RA, Berger RM, et al. Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial. Eur Heart J. 2015;36:2565–73.  https://doi.org/10.1093/eurheartj/ehv336.PubMedCrossRefGoogle Scholar
  76. 76.
    Pieske B, Maggioni AP, Lam CS, Pieske-Kraigher E, Filippatos G, Butler J, et al. Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur Heart J. 2017;38:1119–27.  https://doi.org/10.1093/eurheartj/ehw593.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Van Veldhuisen DJ, Cohen-Solal A, Bohm M, Anker SD, Babalis D, Roughton M, et al. Beta-blockade with nebivolol in elderly heart failure patients with impaired and preserved left ventricular ejection fraction: data from SENIORS (Study of Effects of Nebivolol Intervention on Outcomes and Rehospitalization in Seniors With Heart Failure). J Am Coll Cardiol. 2009;53:2150–8.  https://doi.org/10.1016/jjacc200902.046.PubMedCrossRefGoogle Scholar
  78. 78.
    Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet. 2003;362:777–81.  https://doi.org/10.1016/S0140-6736(03)14285-7. PubMedCrossRefGoogle Scholar
  79. 79.
    Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359:2456–67.  https://doi.org/10.1056/NEJMoa0805450.PubMedCrossRefGoogle Scholar
  80. 80.
    Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370:1383–92.  https://doi.org/10.1056/NEJMoa1313731.PubMedCrossRefGoogle Scholar
  81. 81.
    Wan SH, Stevens SR, Borlaug BA, Anstrom KJ, Deswal A, Felker GM, et al. Differential response to low-dose dopamine or low-dose nesiritide in acute heart failure with reduced or preserved ejection fraction: results from the ROSE AHF Trial (Renal Optimization Strategies Evaluation in Acute Heart Failure). Circ Heart Fail. 2016;9:e002593.  https://doi.org/10.1161/CIRCHEARTFAILURE.115.002593.PubMedCrossRefGoogle Scholar
  82. 82.
    Sharma K, Vaishnav J, Kalathiya R, Miller J, Shah N, Hill T, et al. Randomized Evaluation of Heart Failure with Preserved Ejection Fraction Patients with Acute Heart Failure and Dopamine (Ropa-Dop) Trial. J Card Fail. 2017;23:831.  https://doi.org/10.1016/j.cardfail.2017.10.006.CrossRefGoogle Scholar
  83. 83.
    Jenkins D, Mayer E, Screaton N, Madani M. State-of-the-art chronic thromboembolic pulmonary hypertension diagnosis and management. Eur Respir Rev. 2012;21:32–9.  https://doi.org/10.1183/09059180.00009211.PubMedCrossRefGoogle Scholar
  84. 84.
    Mayer E, Jenkins D, Lindner J, D’Armini A, Kloek J, Meyns B, et al. Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry. J Thorac Cardiovasc Surg. 2011;141:702–10.  https://doi.org/10.1016/j.jtcvs.2010.11.024.PubMedCrossRefGoogle Scholar
  85. 85.
    Kataoka M, Inami T, Hayashida K, Shimura N, Ishiguro H, Abe T, et al. Percutaneous transluminal pulmonary angioplasty for the treatment of chronic thromboembolic pulmonary hypertension. Circ Cardiovasc Interv. 2012;5:756–62.  https://doi.org/10.1161/CIRCINTERVENTIONS.112.971390.PubMedCrossRefGoogle Scholar
  86. 86.
    Ghofrani HA, D’Armini AM, Grimminger F, Hoeper MM, Jansa P, Kim NH, et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013;369:319–29.  https://doi.org/10.1056/NEJMoa1209657.PubMedCrossRefGoogle Scholar
  87. 87.
    Kirklin JK, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, et al. Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J Heart Lung Transplant. 2017;36:1080–6.  https://doi.org/10.1016/j.healun.2017.07.005.PubMedCrossRefGoogle Scholar
  88. 88.
    Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant. 2015;34:1123–30.  https://doi.org/10.1016/j.healun.2015.06.015.PubMedCrossRefGoogle Scholar
  89. 89.
    Argiriou M, Kolokotron SM, Sakellaridis T, Argiriou O, Charitos C, Zarogoulidis P, et al. Right heart failure post left ventricular assist device implantation. J Thorac Dis. 2014;6(Suppl 1):S52–9.  https://doi.org/10.3978/j.issn.2072-1439.2013.10.26. PubMedPubMedCentralGoogle Scholar
  90. 90.
    Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). Appendix A: adverse event definitions: adult and pediatric patients (2013). Available at http://www.uab.edu/medicine/ intermacs/appendices-4-0/appendix-a-4-0.
  91. 91.
    Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32:157–87.  https://doi.org/10.1016/j.healun.2012.09.013.PubMedCrossRefGoogle Scholar
  92. 92.
    Goldstein DJ, Beuford RB. Left ventricular assist devices and bleeding: adding insult to injury. Ann Thorac Surg. 2003;75:S42–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Baumwol J, Macdonald PS, Keogh AM, Kotlyar E, Spratt P, Jansz P, et al. Right heart failure and “failure to thrive” after left ventricular assist device: clinical predictors and outcomes. J Heart Lung Transplant. 2011;30:888–95.  https://doi.org/10.1016/j.healun.2011.03.006.PubMedGoogle Scholar
  94. 94.
    Tsiouris A, Paone G, Brewer RJ, Nemeh HW, Borgi J, Morgan JA. Outcomes of patients with right ventricular failure on milrinone after left ventricular assist device implantation. ASAIO J. 2015;61:133–8.  https://doi.org/10.1097/MAT.0000000000000188.PubMedCrossRefGoogle Scholar
  95. 95.
    Sabato LA, Salerno DM, Moretz JD, Jennings DL. Inhaled pulmonary vasodilator therapy for management of right ventricular dysfunction after left ventricular assist device placement and cardiac transplantation. Pharmacotherapy. 2017;37:944–55.  https://doi.org/10.1002/phar.1959.PubMedCrossRefGoogle Scholar
  96. 96.
    Argenziano M, Choudhri AF, Moazami N, Rose EA, Smith CR, Levin HR, et al. Randomized, double-blind trial of inhaled nitric oxide in LVAD recipients with pulmonary hypertension. Ann Thorac Surg. 1998;65(2):340–5.  https://doi.org/10.1016/S0003-4975(97)01307-6.PubMedCrossRefGoogle Scholar
  97. 97.
    Potapov E, Meyer D, Swaminathan M, Ramsay M, El Banayosy A, Diehl C, et al. Inhaled nitric oxide after left ventricular assist device implantation: a prospective, randomized, double-blind, multicenter, placebo-controlled trial. J Heart Lung Transplant. 2011;30:870–8.  https://doi.org/10.1016/j.healun.2011.03.005.PubMedGoogle Scholar
  98. 98.
    Groves DS, Blum FE, Huffmyer JL, Kennedy JL, Ahmad HB, Durieux ME, et al. Effects of early inhaled epoprostenol therapy on pulmonary artery pressure and blood loss during LVAD placement. J Cardiothorac Vasc Anesth. 2014;28:652–60.  https://doi.org/10.1053/j.jvca.2013.05.028.PubMedCrossRefGoogle Scholar
  99. 99.
    Critoph C, Green G, Hayes H, Baumwol J, Lam K, Larbalestier R, et al. Clinical outcomes of patients treated with pulmonary vasodilators early and in high dose after left ventricular assist device implantation. Artif Organs. 2016;40:106–14.  https://doi.org/10.1111/aor.12502.PubMedCrossRefGoogle Scholar
  100. 100.
    Haglund NA, Burdorf A, Jones T, Shostrom V, Um J, Ryan T, et al. Inhaled milrinone after left ventricular assist device implantation. J Card Fail. 2015;21:792–7.  https://doi.org/10.1016/j.cardfail.2015.04.011.PubMedCrossRefGoogle Scholar
  101. 101.
    Green EM, Givertz MM. Management of acute right ventricular failure in the intensive care unit. Curr Heart Fail Rep. 2012;9:228–35.  https://doi.org/10.1007/s11897-012-0104-x.PubMedCrossRefGoogle Scholar
  102. 102.
    Piazza G, Goldhaber SZ. The acutely decompensated right ventricle: pathways for diagnosis and management. Chest. 2005;128(3):1836–52.  https://doi.org/10.1378/chest.128.3.1836.PubMedCrossRefGoogle Scholar
  103. 103.
    Ferrario M, Poli A, Previtali M, Lanzarini L, Fetiveau R, Diotallevi P, et al. Hemodynamics of volume loading compared with dobutamine in severe right ventricular infarction. Am J Cardiol. 1994;74:329–33.  https://doi.org/10.1016/0002-9149(94)90398-0.PubMedCrossRefGoogle Scholar
  104. 104.
    Cuffe MS, Califf RM, Adams KF Jr, Benza R, Bourge R, Colucci WS, et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA. 2002;287(12):1541–7.  https://doi.org/10.1001/jama.287.12.1541. PubMedCrossRefGoogle Scholar
  105. 105.
    Shishehbor MH, Moazami N, Tong MZ, Unai S, Tang WH, Soltesz EG. Cardiogenic shock: from ECMO to Impella and beyond. Cleve Clin J Med. 2017;84:287–95.  https://doi.org/10.3949/ccjm.84gr.17002.PubMedCrossRefGoogle Scholar
  106. 106.
    Khani-Hanjani A, Loor G, Chamogeorgakis T, Shafii A, Mountis M, Hanna M, et al. Case series using the ROTAFLOW system as a temporary right ventricular assist device after HeartMate II implantation. ASAIO J. 2013;59:456–60.  https://doi.org/10.1097/MAT.0b013e318291d133.PubMedCrossRefGoogle Scholar
  107. 107.
    Bhama JK, Kormos RL, Toyoda Y, Teuteberg JJ, McCurry KR, Siegenthaler MP. Clinical experience using the Levitronix CentriMag system for temporary right ventricular mechanical circulatory support. J Heart Lung Transplant. 2009;28:971–6.  https://doi.org/10.1016/j.healun.2009.04.015.PubMedCrossRefGoogle Scholar
  108. 108.
    John R, Long JW, Massey HT, Griffith BP, Sun BC, Tector AJ, et al. Outcomes of a multicenter trial of the Levitronix CentriMag ventricular assist system for short-term circulatory support. J Thorac Cardiovasc Surg. 2011;141:932–9.  https://doi.org/10.1016/jjtcvs201003.046.PubMedCrossRefGoogle Scholar
  109. 109.
    Anderson MB, Goldstein J, Milano C, Morris LD, Kormos RL, Bhama J, et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: the prospective RECOVER RIGHT study of the Impella RP device. J Heart Lung Transplant. 2015;34:1549–60.  https://doi.org/10.1016/j.healun.2015.08.018.PubMedCrossRefGoogle Scholar
  110. 110.
    Reddy S, Bernstein D. Molecular mechanisms of right ventricular failure. Circulation. 2015;132(18):1734–42.  https://doi.org/10.1161/CIRCULATIONAHA.114.012975.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Piao L, Marsboom G, Archer SL. Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure. J Mol Med. 2010;88:1011–20.  https://doi.org/10.1007/s00109-010-0679-1.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Urashima T, Zhao M, Wagner R, Fajardo G, Farahani S, Quertermous T, et al. Molecular and physiological characterization of RV remodeling in a murine model of pulmonary stenosis. Am J Physiol Heart Circ Physiol. 2008;295:H1351–68.  https://doi.org/10.1152/ajpheart.91526.2007. PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Ardehali H, Sabbah HN, Burke MA, Sarma S, Liu PP, Cleland JGF, et al. Targeting myocardial substrate metabolism in heart failure: potential for new therapies. Eur J Heart Fail. 2012;14:120–9.  https://doi.org/10.1093/eurjhf/hfr173.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Steggall A, Mordi IR, Lang CC. Targeting metabolic modulation and mitochondrial dysfunction in the treatment of heart failure. Diseases. 2017;5(2):14.  https://doi.org/10.3390/diseases5020014.PubMedCentralCrossRefGoogle Scholar
  115. 115.
    Liles JT, Hoyer K, Oliver J, Chi L, Dhalla AK, Belardinelli L. Ranolazine reduces cardiac remodeling in PAH rats. J Pharmacol Exp Ther. 2015;353(3):480–9.  https://doi.org/10.1124/jpet.114.221861. PubMedCrossRefGoogle Scholar
  116. 116.
    Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L, et al. Metabolic modulation with perhexiline in chronic heart failure a randomized, controlled trial of short-term use of a novel treatment. Circulation. 2005;112:3280–8.  https://doi.org/10.1161/CIRCULATIONAHA.105.551457.PubMedCrossRefGoogle Scholar
  117. 117.
    Nagendran J, Gurtu V, Fu DZ, Dyck JR, Haromy A, Ross DB, et al. A dynamic and chamber-specific mitochondrial remodeling in right ventricular hypertrophy can be therapeutically targeted. J Thorac Cardiovasc Surg. 2008;136:168–78.  https://doi.org/10.1016/j.jtcvs.2008.01.040.PubMedCrossRefGoogle Scholar
  118. 118.
    Bayeva M, Gheorghiade M, Ardehali H. Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol. 2013;61(6):599–610.  https://doi.org/10.1016/j.jacc.2012.08.1021.PubMedCrossRefGoogle Scholar
  119. 119.
    Rosca MG, Tandler B, Hoppel CL. Mitochondria in cardiac hypertrophy and heart failure. J Mol Cell Cardiol. 2013;55:31–41.  https://doi.org/10.1016/j.yjmcc.2012.09.002.PubMedCrossRefGoogle Scholar
  120. 120.
    Ecarnot-Laubriet A, Rochette L, Vergely C, Sicard P, Teyssier JR. The activation pattern of the antioxidant enzymes in the right ventricle of rat in response to pressure overload is of heart failure type. Heart Dis. 2003;5:308–12.  https://doi.org/10.1097/01.hdx.0000089836.03515.a9.PubMedCrossRefGoogle Scholar
  121. 121.
    Szeto HH, Birk AV. Serendipity and the discovery of novel compounds that restore mitochondrial plasticity. Clin Pharmacol Ther. 2014;96:672–83.  https://doi.org/10.1038/clpt.2014.174.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Sabbah HN, Gupta RC, Kohli S, Wang M, Hachem S, Zhang K. Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ Heart Fail. 2016;9:e002206.  https://doi.org/10.1161/CIRCHEARTFAILURE. PubMedPubMedCentralGoogle Scholar
  123. 123.
    Brown DA, Hale SL, Baines CP, del Rio CL, Hamlin RL, Yueyama Y, et al. Reduction of early reperfusion injury with the mitochondria-targeting peptide bendavia. J Cardiovasc Pharmacol Ther. 2014;19:121–32.  https://doi.org/10.1177/1074248413508003.PubMedCrossRefGoogle Scholar
  124. 124.
    Maxwell PH, Pugh CW, Ratcliffe PJ. Activation of the HIF pathway in cancer. Curr Opin Genet Dev. 2001;11:293–9.  https://doi.org/10.1016/S0959-437X(00)00193-3.PubMedCrossRefGoogle Scholar
  125. 125.
    Choi YH, Cowan DB, Nathan M, Poutias D, Stamm C, del Nido PJ, et al. Myocardial hypertrophy overrides the angiogenic response to hypoxia. PLoS One. 2008;3:e4042.  https://doi.org/10.1371/journal.pone.0004042.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D, Smithson L, et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation. 2009;120:1951–60.  https://doi.org/10.1161/CIRCULATIONAHA.109.883843.PubMedCrossRefGoogle Scholar
  127. 127.
    Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation. 2015;131:550–9.  https://doi.org/10.1161/CIRCULATIONAHA.114.009625.PubMedCrossRefGoogle Scholar
  128. 128.
    Oka T, Akazawa H, Naito AT, Komuro I. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ Res. 2014;114:565–71.  https://doi.org/10.1161/CIRCRESAHA.114.300507.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Section of Heart Failure and Cardiac Transplantation, Department of Cardiovascular Medicine, Heart and Vascular InstituteCleveland ClinicClevelandUSA
  2. 2.Parkway HospitalsSingaporeSingapore
  3. 3.Center for Clinical GenomicsCleveland ClinicClevelandUSA

Personalised recommendations