Skip to main content

Advertisement

Log in

Biomarkers in Sleep Apnea and Heart Failure

  • Biomarkers of Heart Failure (W.H.W. Tang and J.L. Grodin, Section Editors)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Sleep-disordered breathing (SDB) is highly prevalent in heart failure (HF) and may confer significant stress to the cardiovascular system and increases the risk for future cardiovascular events. The present review will provide updates on the current understanding of the relationship of SDB and common HF biomarkers and the effect of positive airway pressure therapy on these biomarkers, with particular emphasis in patients with coexisting SDB and HF.

Recent Findings

Prior studies have examined the relationship between HF biomarkers and SDB, and the effect of SDB treatment on these biomarkers, with less data available in the context of coexisting SDB and HF. Overall, however, the association of SDB and circulating biomarkers has been inconsistent.

Summary

Further research is needed to elucidate the relationship between biomarkers and SDB in HF, to evaluate the clinical utility of biomarkers over standard methods in large, prospective studies and also to assess the impact of treatment of SDB on these biomarkers in HF via interventional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation. 2010;121:e46–e215. doi:10.1161/CIRCULATIONAHA.109.192667.

    Article  PubMed  Google Scholar 

  2. Peppard PE, Young T, Barnet JH, et al. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006–14.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Herrscher TE, Akre H, Overland B, et al. High prevalence of sleep apnea in heart failure outpatients: even in patients with preserved systolic function. J Card Fail. 2011;17:420–5.

    Article  PubMed  Google Scholar 

  4. Lanfranchi PA, Somers VK. Sleep-disordered breathing in heart failure: characteristics and implications. Respir Physiol Neurobiol. 2003;136(2–3):153–65.

    Article  PubMed  Google Scholar 

  5. Kasai T, Bradley D. Obstructive sleep apnea and heart failure: pathophysiologic and therapeutic implications. J Am Col Cardiol. 2011;57(2):119–27.

    Article  Google Scholar 

  6. • Kapur VK, Auckley DH, Chowdhuri S, et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med. 2017;13(3):479–504. This is the recent clinical guideline on diagnostic testing for obstructive sleep apnea

    Article  PubMed  Google Scholar 

  7. Javaheri S, Caref EB, Chen E, et al. Sleep apnea testing and outcomes in a large cohort of Medicare beneficiaries with newly diagnosed heart failure. Am J Respir Crit Care Med. 2011;183:539–46.

    Article  PubMed  Google Scholar 

  8. Bradley TD, Logan AG, Kimoff RJ, et al. for the CANPAP Investigators. Continuous positive airway pressure for central sleep apnea and heart failure. N Engl J Med. 2005;353:2025–33.

    Article  CAS  PubMed  Google Scholar 

  9. • Cowie MR, Woehrle H, Wegscheider K, et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med. 2015;373(12):1095–105. The SERVE-HF study is a large, randomized clinical trial of ASV for treatment of central sleep apnea in systolic heart failure. The study showed that the incidence of the primary combined cardiac endpoint did not differ significantly between the ASV and control groups but there was a significantly increased all-cause mortality and cardiovascular mortality in the ASV group compared to the control groups

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Costanzo MR, Ponikowski P, Javaheri S, et al. remedé System Pivotal Trial Study Group. Transvenous neurostimulation for central sleep apnoea: a randomized controlled trial. Lancet. 2016;388(10048):974–82. doi:10.1016/S0140-6736(16)30961-8.

    Article  PubMed  Google Scholar 

  11. Naughton M, Benard D, Tam A, et al. Role of hyperventilation in the pathogenesis of central sleep apneas in patients with congestive heart failure. Am Rev Respir Dis. 1993;148:330–8.

    Article  CAS  PubMed  Google Scholar 

  12. Bradley TD, Floras JS. Sleep apnea and heart failure: part 1: obstructive sleep apnea. Circulation. 2003;107(12):1671–8.

    Article  PubMed  Google Scholar 

  13. Selmi C, Montano N, Furlan R, Keen CL, Gershwin ME. Inflammation and oxidative stress in obstructive sleep apnea syndrome. Exp Biol Med (Maywood). 2007;232(11):1409–13.

    Article  CAS  Google Scholar 

  14. Eisele HJ, Markart P, Schulz R. Obstructive sleep apnea, oxidative stress, and cardiovascular disease: evidence from human studies. Oxidative Med Cell Longev. 2015;2015:608438.

    Article  Google Scholar 

  15. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):1810–52.

    Article  PubMed  Google Scholar 

  16. Houben AJ, van der Zander K, de Leeuw PW. Vascular and renal actions of brain natriuretic peptide in man: physiology and pharmacology. Fundam Clin Pharmacol. 2005;19(4):411–9.

    Article  CAS  PubMed  Google Scholar 

  17. Kim HN, Januzzi JL Jr. Natriuretic peptide testing in heart failure. Circulation. 2011;123:2015–9.

    Article  PubMed  Google Scholar 

  18. Maisel AS, Koon J, Krishnaswamy P, et al. Utility of B-natriuretic peptide as a rapid, point-of-care test for screening patients undergoing echocardiography to determine left ventricular dysfunction. Am Heart J. 2001;141(3):367.

    Article  CAS  PubMed  Google Scholar 

  19. Krishnaswamy P, Lubien E, Clopton P, et al. Utility of B-natriuretic peptide levels in identifying patients with left ventricular systolic or diastolic dysfunction. Am J Med. 2011;111(4):274.

    Article  Google Scholar 

  20. Maisel AS, Krishnaswamy P, Nowak RM, et al. Breathing Not Properly Multinational Study Investigators. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347(3):161.

    Article  CAS  PubMed  Google Scholar 

  21. Fonarow GC, Peacock WF, Phillips CO, et al. AHERE Scientific Advisory Committee and Investigators. Admission B-type natriuretic peptide levels and in-hospital mortality in acute decompensated heart failure. J Am Coll Cardiol. 2007;49(19):1943.

    Article  CAS  PubMed  Google Scholar 

  22. Doust JA, Pietrzak E, Dobson A, Glasziou P. How well does B-type natriuretic peptide predict death and cardiac events in patients with heart failure: systematic review. BMI. 2005;330(7492):625.

    Article  CAS  Google Scholar 

  23. Patwardhan AA, Larson MG, Levy D, et al. Obstructive sleep apnea and plasma natriuretic peptide levels in a community-based sample. Sleep. 2006;29:1301–6.

    Article  PubMed  Google Scholar 

  24. Kita H, Ohi M, Chin K, et al. The nocturnal secretion of cardiac natriuretic peptides during obstructive sleep apnoea and its response to therapy with nasal continuous positive airway pressure. J Sleep Res. 1998;7:199–207.

    Article  CAS  PubMed  Google Scholar 

  25. Svatikova A, Shamsuzzaman AS, Wolk R, et al. Plasma brain natriuretic peptide in obstructive sleep apnea. Am J Cardiol. 2004;94:529–32.

    Article  CAS  PubMed  Google Scholar 

  26. Pepperell J, Stradling J, Davies R. Brain natriuretic peptide is unchanged after 4 weeks of continuous positive airway pressure therapy. J Sleep Res. 2006;15:463–54.

    Article  PubMed  Google Scholar 

  27. Usui Y, Tomiyama H, Hashimoto H, et al. Plasma B-type natriuretic peptide level is associated with left ventricular hypertrophy among obstructive sleep apnea patients. J Hypertes. 2008;26:117–23.

    Article  CAS  Google Scholar 

  28. Hubner RH, El Mokhtari EI, Freitag S, et al. NT-proBNP is not elevated in patients with obstructive sleep apnea. Respir Med. 2008;102:134–42.

    Article  PubMed  Google Scholar 

  29. Maeder MT, Ammann P, Rickli H, et al. N-terminal pro-B-type natriuretic peptide and functional capacity in patients with obstructive sleep apnea. Sleep Breath. 2008;12:7–16.

    Article  PubMed  Google Scholar 

  30. Cifci N, Uyar M, Elbek O, et al. Impact of CPAP treatment on cardiac biomarkers and pro-BNP in obstructive sleep apnea syndrome. Sleep Breath. 2010;14:241–4.

    Article  PubMed  Google Scholar 

  31. Querejeta Roca G, Redline S, Punjabi N, et al. Sleep apnea is associated with subclinical myocardial injury in the community. The ARIC-SHHS Study. Am J Respir Crit Care Med. 2013;188:1460–5.

    Article  PubMed  Google Scholar 

  32. Ljunggren M, Lindahl B, Theorell-Haglow J, Lindberg E. Association between obstructive sleep apnea and elevated levels of type B natriuretic peptide in a community-based sample of women. Sleep. 2012;35:152101527.

    Article  Google Scholar 

  33. Tasci S, Manka R, Scholtyssek S, Lentini S, Troatz C, Stofffel-Wagner B, et al. NT-pro-BNP in obstructive sleep apnea syndrome is decreased by nasal continuous positive airway pressure. Clin Res Cardiol. 2006;95:23–30.

    Article  CAS  PubMed  Google Scholar 

  34. Colish J, Walker JR, Elmayergi N, et al. Obstructive sleep apnea: effects of continuous positive airway pressure on cardiac remodeling as assessed by cardiac biomarkers, echocardiography, and cardiac MRI. Chest. 2012;141:674–81.

    Article  PubMed  Google Scholar 

  35. Hall TS, Herrscher T, Jarolim P, et al. Obstructive sleep apnea: no independent association to troponins. Sleep Breath. 2014;18:351–8.

    Article  PubMed  Google Scholar 

  36. Maeder MT, Strobel W, Christ M, et al. Comprehensive biomarker profiling in patients with obstructive sleep apnea. Clin Biochem. 2015;48:340–6.

    Article  CAS  PubMed  Google Scholar 

  37. Miyazato M, Tohyama K, Touyama M, et al. Effect of continuous positive airway pressure on nocturnal urine production in patients with obstructive sleep apnea syndrome. Neurourol Urodyn. 2015; doi:10.1002/nau.22936.

  38. Craig S, Kylintireas I, Kohler M, et al. Effect of CPAP on cardiac function in minimally symptomatic patients with OSA: results from a subset of the MOSAIC randomized trial. J Clin Sleep Med. 2015;11:967–73.

    PubMed  PubMed Central  Google Scholar 

  39. Müller P, Grabowski C, Schiedat F, et al. Reverse remodeling of the atria after treatment of obstructive sleep apnoea with continuous positive airway pressure: evidence from electro-mechanical and endocrine markers. Heart Lung Circ. 2016;25:53–60.

    Article  PubMed  Google Scholar 

  40. Monneret D, Tamisier R, Ducros V, et al. Glucose tolerance and cardiovascular risk biomarkers in non-diabetic non-obese obstructive sleep apnea patients: effects of long-term continuous positive airway pressure. Respir Med. 2016;112:119–25.

    Article  CAS  PubMed  Google Scholar 

  41. Carmona-Bernal C, Quintana-Gallego E, Villa-Gil M, et al. Brain natriuretic peptide in patients with congestive heart failure and central sleep apnea. Chest. 2005;127(5):1667–73.

    Article  CAS  PubMed  Google Scholar 

  42. Rao A, Georgiadou P, Francis DP, et al. Sleep-disordered breathing in a general heart failure population: relationships to neurohumoral activation and subjective symptoms. J Sleep Res. 2006;15:81–8.

    Article  PubMed  Google Scholar 

  43. Vazir A, Hastings PC, Dayer M, et al. A high prevalence of sleep disordered breathing in men with mid symptomatic chronic heart failure due to left ventricular systolic dysfunction. Eur J Heart Fail. 2007;9:243–50.

    Article  CAS  PubMed  Google Scholar 

  44. Christ M, Sharkova Y, Fenske H, et al. Brain natriuretic peptide for prediction of Cheyne-Stokes respiration in heart failure patients. Int J Cardiol. 2007;116(1):62–9.

    Article  PubMed  Google Scholar 

  45. Calvin AD, Somers VK, van der Walt C, et al. Relation of natriuretic peptie concentrations to central sleep apnea in patients with heart failure. Chest. 2011;140(6):1517–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gottlieb JD, Schwartz AR, Marshall J, et al. Hypoxia, not the frequency of sleep apnea, induces acute hemodynamic stress in patients with chronic heart failure. J Am Coll Cardiol. 2009;54:1706–12.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ferrier K, Campbell A, Yee B, et al. Sleep-disordered breathing occurs frequently in stable outpatients with congestive heart failure. Chest. 2005;128:2116–22.

    Article  PubMed  Google Scholar 

  48. Ng ACC, Davis GM, Chow CM, et al. Impact of sleep disordered breathing severity on hemodynamics, autonomic balance and cardiopulmonary functional status in chronic heart failure. Int J Cardiol. 2010;141:227–35.

    Article  PubMed  Google Scholar 

  49. Miyata M, Yoshihisa A, Yamauchi H, et al. Impact of sleep-disordered breathing on myocardial damage and metabolism in patients with chronic heart failure. Heart Vessel. 2015;30:318–24.

    Article  Google Scholar 

  50. Svatikova A, Shamsuzzaman AS, Wolk R, et al. Plasma brain natriuretic peptide in obstructive sleep apnea. Am J Cardiol. 2004;94:529–32.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao ZH, Liu ZH, Luo Q, et al. Positive pressure ventilation treatment reduces plasma levels of amino terminal-pro brain natriuretic peptide in congestive heart failure patients with sleep apnea. Circ J. 2006;70:572–4.

    Article  CAS  PubMed  Google Scholar 

  52. Ferrier KA, Neill AM, O’Meeghan T, et al. Continuous positive airway pressure in heart failure patients with obstructive sleep apnoea. Int Med J. 2008;38:829–36.

    Article  CAS  Google Scholar 

  53. Noda A, Izawa H, Asano H, et al. Beneficial effect of bilevel positive airway pressure on left ventricular function in ambulatory patients with idiopathic dilated cardiomyopathy and central sleep apnea-hypopnea: a preliminary study. Chest. 2007;131(6):1694–701.

    Article  PubMed  Google Scholar 

  54. Dohi T, Kasai T, Narui K, et al. Bi-level positive airway pressure ventilation for treating heart failure with central sleep apnea that is unresponsive to continuous positive airway pressure. Circ J. 2008;72(7):1100–5.

    Article  PubMed  Google Scholar 

  55. Bitter T, Westerheide N, Faber L, et al. Adaptive servoventilation in diastolic heart failure and Cheyne-Stokes respiration. Eur Respir J. 2010;36:385–92.

    Article  CAS  PubMed  Google Scholar 

  56. Yoshihisa A, Suzuki S, Yamaki T, et al. Impact of adaptive servo-ventilation on cardiovascular function and prognosis in HFpEF and sleep-disordered breathing. Eur J Heart Fail. 2013;15:543–50.

    Article  CAS  PubMed  Google Scholar 

  57. Arzt M, Schroll S, Series F, et al. Auto-servoventilation in heart failure with sleep apnoea: a randomised controlled trial. Eur Respir J. 2013;42(5):1244–54.

    Article  PubMed  Google Scholar 

  58. Pepperell JC, Maskell NA, Jones DR, et al. A randomized controlled trial of adaptive ventilation for Cheyne-Stokes breathing in heart failure. Am J Respir Crit Care Med. 2003;168(9):1109–14.

    Article  PubMed  Google Scholar 

  59. Koyama T, Watanabe H, Tamura Y, et al. Adaptive servo-ventilation therapy improves cardiac sympathetic nerve activity in patients with heart failure. Eur J Heart Fail. 2013;15(8):902–9.

    Article  PubMed  Google Scholar 

  60. Oldenburg O, Schmidt A, Lamp B, et al. Adaptive servoventilation improves cardiac function in patients with chronic heart failure and Cheyne-Stokes respiration. Eur J Heart Fail. 2008;10(6):581–6.

    Article  PubMed  Google Scholar 

  61. Ganong’s Review of Human Physiology. 24th Edition. ISBN 978-07-178003-2 The McGraw-Hill Companies, Inc.; 2012.

  62. Jaffe AS, Vasile VC, Milone M, et al. Diseased skeletal muscle: a noncardiac source f increased circulating concentrations of cardiac troponin T. J Am Coll Cardiol 2011 1;58(17):1819.

  63. Roffi M, Patrono C, Collet JP, et al. 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:267–315.

    Article  PubMed  Google Scholar 

  64. Ford I, Shah AS, Zhang R, et al. High-sensitivity cardiac troponin, statin therapy, and risk of coronary heart disease. J Am Coll Cardiol. 2016;68(25):2719–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. De Lemos JA, Drazner MH, Omland T, et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA. 2010;304(22):2503.

    Article  PubMed  Google Scholar 

  66. deFilippi CR, de Lemos JA, Christenson RH, et al. Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA. 2010;304(22):2494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee CH, Sethi R, Li R, et al. Obstructive sleep apnea and cardiovascular events after percutaneous coronary intervention. Circulation. 2016;133(21):2008–17.

    Article  PubMed  Google Scholar 

  68. Marin JM, Carrizo SJ, Vicente E, Augsti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet. 2005;365(9464):1046.

    Article  PubMed  Google Scholar 

  69. McEvoy RD, Antic NA, Heeley E, et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N Engl J Med. 2016;375(10):919–31.

    Article  PubMed  Google Scholar 

  70. Gami AS, Svatikova A, Wolk R, et al. Cardiac troponin T in obstructive sleep apnea. Chest. 2004;125:2097–100.

    Article  CAS  PubMed  Google Scholar 

  71. Oktay B, Akbal E, Firat H, et al. Evaluation of the relationship between heart type fatty acid binding protein levels and the risk of cardiac damage in patients with obstructive sleep apnea syndrome. Sleep Breath. 2008;12:223–8.

    Article  PubMed  Google Scholar 

  72. Randby A, Namtvedt SK, Einvik H, et al. Obstructive sleep apnea is associated with increased high-sensitivity cardiac troponin T levels. Chest. 2012;142:639–46.

    Article  CAS  PubMed  Google Scholar 

  73. Barcelo A, Esquinas C, Bauca JM, et al. Effect of CPAP treatment on plasma high sensitivity troponin levels in patients with obstructive sleep apnea. Respir Med. 2014;108:1060–3.

    Article  PubMed  Google Scholar 

  74. • Querejeta Roca G, Redline S, Claggett B, et al. Sex-specific association of sleep apnea severity with subclinical myocardial injury, ventricular hypertrophy, and heart failure risk in a community dwelling cohort: the Atherosclerosis Risk in Communities-Sleep Heart Health Study. Circulation. 2015;132(14):1329–37. This prospective cohort study showed that obstructive sleep apnea is independently associated with hs-TnT among women but not in men, suggesting sex-specific associations in sleep apnea and subclinical myocardial injury

    Article  Google Scholar 

  75. Einvik G, Rosjo H, Randby A, et al. Severity of obstructive sleep apnea is associated with cardiac troponin I concentrations in a community-based sample: data from the Akershus Sleep Apnea Project. Sleep. 2014;37:1111–6. (6A-6B)

    Article  PubMed  PubMed Central  Google Scholar 

  76. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB. Elevated c-reactive protein levels in overweight and obese adults. JAMA. 1999;282(22):2131–5.

    Article  CAS  PubMed  Google Scholar 

  77. Taheri S, Austin D, Ling L, et al. Correlated of serum C-reactive protein (CRP)—no association with sleep duration or sleep disordered breathing. Sleep. 2007;30(8):991–6.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Guilleminault C, Kirisoglu C, Ohayon MM. C-reactive protein and sleep-disordered breathing. Sleep. 2004;27(8):1507–11.

    Article  PubMed  Google Scholar 

  79. Kohler M, Ayers L, Pepperell JC, et al. Effects of continuous positive airway pressure on systemic inflammation in patients with moderate to severe obstructive sleep apnea: a randomized controlled trial. Thorax. 2009;64:67–73.

    Article  CAS  PubMed  Google Scholar 

  80. Mermigkis C, Bouloukaki I, Mermigkis D, et al. CRP evolution pattern in CPAP-treated obstructive sleep apnea patients. Does gender play a role? Sleep Breath. 2012;16:813–9.

    Article  PubMed  Google Scholar 

  81. Lui MM, Lam JC, Mak HK, et al. C-reactive protein is associated with obstructive sleep apnea independent of visceral obesity. Chest. 2009;135(4):950–6.

    Article  CAS  PubMed  Google Scholar 

  82. Schmalgemeier H, Bitter T, Fischbach T, et al. C-reactive protein is elevated in heart failure patients with central sleep apnea and Cheyne-Stokes respiration. Respiration. 2014;87(2):113–20.

    Article  CAS  PubMed  Google Scholar 

  83. Ait-Oufella H, Tableb S, Mallat Z, Tedgui A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31:969–79.

    Article  CAS  PubMed  Google Scholar 

  84. Mehra R, Storfer-Isser AM, Kirchner L, et al. Soluble interleukin 6 receptor: a novel marker of moderate to severe sleep-related breathing disorder. Arch Intern Med. 2006;166:1725–31.

    Article  CAS  PubMed  Google Scholar 

  85. Ciftci TU, Kokturk O, Bukan N, Bilgihan A. The relationship between serum cytokine levels with obesity and obstructive sleep apnea syndrome. Cytokine. 2004;28(2):87–91.

    Article  CAS  PubMed  Google Scholar 

  86. Mansfield DR, Gollogly NC, Kaye DM, et al. Controlled trial of continuous positive airway pressure in obstructive sleep apnea and heart failure. Am J Respir Crit Care Med. 2004;169:361–6.

    Article  PubMed  Google Scholar 

  87. Egea CJ, Aizpuru F, Pinto JA, Spanish Group of Sleep Breathing Disorders, et al. Cardiac function after CPAP therapy in patients with chronic heart failure and sleep apnea: a multicenter study. Sleep Med. 2008;9(6):660–6.

    Article  PubMed  Google Scholar 

  88. • Aggarwal S, Nadeem R, Loomba R, et al. The effects of continuous positive airways pressure therapy on cardiovascular end points in patients with sleep-disordered breathing and heart failure: a meta-analysis of randomized controlled trials. Clin Cardiol, Recent meta-analysis of randomized controlled trials of CPAP in sleep apnea and heart failure. 2014;37(1):57–65.

  89. • Fava C, Dorigoni S, Dalle Vedove F, et al. Effect of CPAP on blood pressure in patients with OSA/hypopnea. A systemic review and meta-analysis. Chest, Recent meta-analysis of CPAP therapy on blood pressure in obstructive sleep apnea. 2014;145(4):762–71.

  90. • Iftikhar IH, Valentine CW, Bittencourt LR, et al. Effects of continuous positive airway pressure on blood pressure in patients with resistant hypertension and obstructive sleep apnea: a meta-analysis. J Hyper, Recent meta-analysis of CPAP therapy on blood pressure in resistant hypertension and obstructive sleep apnea. 2014;32:2341–50.

  91. • Bratton DJ, Stradling JR, Barbé F, et al. Effect of CPAP on blood pressure in patients with minimally symptomatic obstructive sleep apnoea: a meta-analysis using individual patient data from four randomized controlled trials. Thorax, Recent meta-analysis of randomized controlled trials of CPAP therapy in patients with minimally symptomatic obstructive sleep apnea. 2014;69:1128–35.

  92. Barbé F, Duran-Cantolla J, Sánchez-de-la-Toree M, Spanish Sleep and Breathing Network, et al. Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: a randomized controlled trial. JAMA. 2012;307(20):2161–8.

    Article  PubMed  Google Scholar 

  93. Schwarz EI, Puhan MA, Schlatzer C, Stradling JR, Kohler M. Effect of CPAP therapy on endothelial function in obstructive sleep apnea: a systematic review and meta-analysis. Respirology. 2015;20(6):889–95.

    Article  PubMed  Google Scholar 

  94. Vlachantoni IT, Dikaiakou E, Antonopoulos CN, et al. Effects of continuous positive airway pressure (CPAP) treatment for obstructive sleep apnea in arterial stiffness: a meta-analysis. Sleep Med Rev. 2013;17(1):19–28.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Y. Zhao.

Ethics declarations

Conflict of Interest

Ying Y. Zhao declares no conflict of interests.

Reena Mehra received grants from NIH, royalties from Up to Date, an honorarium from American Academy of Sleep Medicine, non-financial support from Resmed, and non-financial support from Philips Respironics.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Biomarkers of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y.Y., Mehra, R. Biomarkers in Sleep Apnea and Heart Failure. Curr Heart Fail Rep 14, 284–300 (2017). https://doi.org/10.1007/s11897-017-0339-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-017-0339-7

Keywords

Navigation