Skip to main content
Log in

CRP evolution pattern in CPAP-treated obstructive sleep apnea patients. Does gender play a role?

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Background—aim

C-reactive protein (CRP) is directly implicated in atherogenesis and associated cardiovascular morbidity in patients with obstructive sleep apnea (OSA). Effective continuous positive airway pressure (CPAP) treatment has been shown to gradually decrease CRP levels and thus consequently improve disease-related cardiovascular morbidity. However, the influence of gender on the CRP evolution pattern has never been assessed before. The aim of our study was to investigate possible gender differences in CRP evolution in OSA patients 3 and 6 months after the start of effective CPAP treatment.

Methods

The study population consisted of 436 patients (252 males/184 females) with newly diagnosed moderate to severe OSA and good CPAP compliance assessed by a thorough follow up. High-sensitivity C-reactive protein (hs-CRP) was assessed before CPAP initiation and at the third and sixth month of the follow-up period.

Results

C-reactive protein values showed a statistically significant decrease at the third and sixth month of CPAP therapy [initial values 0.79 ± 0.65 mg/dL versus 0.70 ± 0.52 mg/dL (p < 0.05) after 3 months and 0.30 ± 0.33 mg/dL (p < 0.001) after 6 months of CPAP therapy]. When patients were divided into males and females, the above evolution pattern was changed. At the third month time point, the CRP values showed a statistically significant decrease only in males (from 0.74 ± 0.53 mg/dL to 0.61 ± 0.5 mg/dL, p < 0.01) while females showed only minimal and insignificant changes (from 0.87 ± 0.79 mg/dL to 0.83 ± 0.51 mg/dL, p > 0.05). After 6 months’ treatment, CRP decreased significantly in both genders (males from 0.74 ± 0.53 mg/dL to 0.28 ± 0.32 mg/dL, p < 0.001 and females from 0.87 ± 0.79 mg/dL to 0.34 ± 0.36 mg/dL, p < 0.001).

Conclusion

Our results suggest a delay in the normalization of CRP levels in females despite effective CPAP treatment. A time period of at least 6 months appeared to be required in women in order to reduce CRP levels and consequent cardiovascular risk. In contrast, CPAP’s protective role in males is achieved at an earlier time point. Gender-related hormonal and genetic factors may influence the above CRP evolution pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. American Academy of Sleep Medicine (2005) International classification of sleep disorders. In: Diagnostic and coding manual, 2nd edn. American Academy of Sleep Medicine, Westchester

  2. Nieto FJ, Young TB, Lind BK, Shahar E, Samet JM, Redline S, D’Agostino RB, Newman AB, Lebowitz MD, Pickering TG (2000) Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study. JAMA 283:829–1836

    Article  Google Scholar 

  3. Young T, Peppard P (2000) Sleep-disordered breathing and cardiovascular disease: epidemiologic evidence for a relationship. Sleep 23:S122–S126

    PubMed  Google Scholar 

  4. Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Javier Nieto F, O’Connor GT, Boland LL, Schwartz JE, Samet JM (2001) Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med 163:19–25

    PubMed  CAS  Google Scholar 

  5. Ridker PM (2007) C-reactive protein and the prediction of cardiovascular events among those at intermediate risk: moving an inflammatory hypothesis toward consensus. J Am Coll Cardiol 49:2129–2138

    Article  PubMed  CAS  Google Scholar 

  6. Albert CM, Ma J, Rifai N, Stampfer MJ, Ridker PM (2002) Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation 105:2595–2599

    Article  PubMed  CAS  Google Scholar 

  7. Koenig W, Sund M, Frohlich M, Fischer HG, Löwel H, Döring A, Hutchinson WL, Pepys MB (1999) C-reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation 99:237–242

    Article  PubMed  CAS  Google Scholar 

  8. Pradhan AD, Manson JE, Rossouw JE, Siscovick DS, Mouton CP, Rifai N, Wallace RB, Jackson RD, Pettinger MB, Ridker PM (2002) Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease: prospective analysis from the Women’s Health Initiative observational study. JAMA 288:980–987

    Article  PubMed  CAS  Google Scholar 

  9. Piéroni L, Bastard JP, Piton A, Khalil L, Hainque B, Jardel C (2003) Interpretation of circulating C-reactive protein levels in adults: body mass index and gender are a must. Diabetes Metab 29:133–138

    Article  PubMed  Google Scholar 

  10. Khera A, McGuire DK, Murphy SA, Stanek HG, Das SR, Vongpatanasin W, Wians FH Jr, Grundy SM, de Lemos JA (2005) Race and gender differences in C-reactive protein levels. J Am Coll Cardiol 46:464–469

    Article  PubMed  CAS  Google Scholar 

  11. Lakoski SG, Cushman M, Criqui M, Rundek T, Blumenthal RS, D’Agostino RB Jr, Herrington DM (2006) Gender and C-reactive protein: data from the Multiethnic Study of Atherosclerosis (MESA) cohort. Am Heart J 152:593–598

    Article  PubMed  CAS  Google Scholar 

  12. Ford ES, Giles WH, Mokdad AH, Myers GL (2004) Distribution and correlates of C-reactive protein concentrations among adult US women. Clin Chem 50:574–581

    Article  PubMed  CAS  Google Scholar 

  13. Khera A, Vega GL, Das SR, Ayers C, McGuire DK, Grundy SM, de Lemos JA (2009) Sex differences in the relationship between C-reactive protein and body fat. J Clin Endocrinol Metab 94:3251–3258

    Article  PubMed  CAS  Google Scholar 

  14. Shamsuzzaman AS, Winnicki M, Lanfranchi P, Wolk R, Kara T, Accurso V, Somers VK (2002) Elevated C-reactive protein in patients with obstructive sleep apnea. Circulation 105:2462–2464

    Article  PubMed  CAS  Google Scholar 

  15. Yokoe T, Minoguchi K, Matsuo H, Oda N, Minoguchi H, Yoshino G, Hirano T, Adachi M (2003) Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation 107:1129–1134

    Article  PubMed  CAS  Google Scholar 

  16. Kokturk O, Ciftci TU, Mollarecep E, Ciftci B (2005) Elevated C-reactive protein levels and increased cardiovascular risk in patients with obstructive sleep apnea syndrome. Int Heart J 46:801–809

    Article  PubMed  CAS  Google Scholar 

  17. Saletu M, Nosiska D, Kapfhammer G, Lalouschek W, Saletu B, Benesch T, Zeitlhofer J (2006) Structural and serum surrogate markers of cerebrovascular disease in obstructive sleep apnea (OSA): association of mild OSA with early atherosclerosis. J Neurol 53:746–752

    Article  Google Scholar 

  18. Hayashi M, Fujimoto K, Urushibata K, Takamizawa A, Kinoshita O, Kubo K (2006) Hypoxia-sensitive molecules may modulate the development of atherosclerosis in sleep apnoea syndrome. Respirology 11:24–31

    Article  PubMed  Google Scholar 

  19. Can M, Acikgoz S, Mungan G, Bayraktaroğlu T, Koçak E, Güven B, Demirtas S (2006) Serum cardiovascular risk factors in obstructive sleep apnea. Chest 129:233–237

    Article  PubMed  CAS  Google Scholar 

  20. Punjabi NM, Beamer BA (2007) C-reactive protein is associated with sleep disordered breathing independent of adiposity. Sleep 30:29–34

    PubMed  Google Scholar 

  21. Lui MM, Lam JC, Mak HK, Xu A, Ooi C, Lam DC, Mak JC, Khong PL, Ip MS (2009) C-reactive protein is associated with obstructive sleep apnea independent of visceral obesity. Chest 135:950–956

    Article  PubMed  CAS  Google Scholar 

  22. Barcelo A, Barbe F, Llompart E, Mayoralas LR, Ladaria A, Bosch M, Agustí AG (2004) Effects of obesity on C-reactive protein level and metabolic disturbances in male patients with obstructive sleep apnea. Am J Med 117:118–121

    Article  PubMed  CAS  Google Scholar 

  23. Guilleminault C, Kirisoglu C, Ohayon M (2004) C-reactive protein and sleep-disordered breathing. Sleep 27:1507–1511

    PubMed  Google Scholar 

  24. Taheri S, Austin D, Lin L, Nieto FJ, Young T, Mignot E (2007) Correlates of serum C-reactive protein (CRP)—no association with sleep duration or sleep disordered breathing. Sleep 30:991–996

    PubMed  Google Scholar 

  25. Ryan S, Nolan GM, Hannigan E, Cunningham S, Taylor C, McNicholas WT (2007) Cardiovascular risk markers in obstructive sleep apnoea syndrome and correlation with obesity. Thorax 62:509–514

    Article  PubMed  Google Scholar 

  26. Schiza SE, Mermigkis C, Panagiotis P, Bouloukaki I, Kallergis E, Tzanakis N, Tzortzaki E, Vlachaki E, Siafakas NM (2010) C-reactive protein evolution in obstructive sleep apnoea patients under CPAP therapy. Eur J Clin Invest 40:968–975

    Article  PubMed  CAS  Google Scholar 

  27. Steiropoulos P, Kotsianidis I, Nena E, Tsara V, Gounari E, Hatzizisi O, Kyriazis G, Christaki P, Froudarakis M, Bouros D (2009) Long term effect of continuous positive airway pressure therapy on inflammation markers of patients with obstructive sleep apnea syndrome. Sleep 32:537–543

    PubMed  Google Scholar 

  28. Ishida K, Kato M, Kato Y, Yanagihara K, Kinugasa Y, Kotani K, Igawa O, Hisatome I, Shigemasa C, Somers VK (2009) Appropriate use of nasal continuous positive airway pressure decreases elevated C-reactive protein in patients with obstructive sleep apnea. Chest 136:125–129

    Article  PubMed  CAS  Google Scholar 

  29. Steiropoulos P, Tsara V, Nena F, Fitili C, Kataropoulou M, Froudarakis M, Christaki P, Bouros D (2007) Effect of continuous positive airway pressure treatment on serum cardiovascular risk factors in patients with obstructive sleep apnea hypopnea syndrome. Chest 132:843–851

    Article  PubMed  CAS  Google Scholar 

  30. Akashiba T, Akahoshi T, Kawahara S, Majima T, Horie T (2005) Effects of long-term nasal continuous positive airway pressure on C-reactive protein in patients with obstructive sleep apnea syndrome. Intern Med 44:899–900

    Article  PubMed  Google Scholar 

  31. Kushida CA, Chediak A, Berry RB, Brown LK, Gozal D, Iber C, Parthasarathy S, Quan SF, Rowley JA (2008) Positive Airway Pressure Titration Task Force; American Academy of Sleep Medicine. Clinical guidelines for the manual titration of positive airway pressure in patients with obstructive sleep apnea. J Clin Sleep Med 4:157–171

    PubMed  Google Scholar 

  32. Kribbs NB, Pack AI, Kline LR, Smith PL, Schwartz AR, Schubert NM, Redline S, Henry JN, Getsy JE, Dinges DF (1993) Objective measurement of patterns of nasal CPAP use by patients with obstructive sleep apnea. Am Rev Respir Dis 147:887–895

    PubMed  CAS  Google Scholar 

  33. Reeves-Hoché MK, Meck R, Zwillich CW (1994) Nasal CPAP: an objective evaluation of patient compliance. Am J Respir Crit Care Med 149:149–154

    PubMed  Google Scholar 

  34. Iber K, Ancoli-Israel S, Chesson AL, Quan SF (2007) The AASM manual for the scoring of sleep and associated events. American Academy of Sleep Medicine, Westchester

    Google Scholar 

  35. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC Jr, Taubert K, Tracy RP, Vinicor F (2003) Centers for Disease Control and Prevention. American Heart Association. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107:499–511

    Article  PubMed  Google Scholar 

  36. Ridker PM (2001) High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation 103:1813–1818

    Article  PubMed  CAS  Google Scholar 

  37. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR (2002) Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 347:1557–1565

    Article  PubMed  CAS  Google Scholar 

  38. Rogowski O, Zeltser D, Shapira I, Burke M, Zakut V, Mardi T, Ben-Assayag E, Serov J, Rozenblat M, Berliner S (2004) Gender differences in C-reactive protein concentrations in individuals with atherothrombotic risk factors and apparently healthy ones. Biomarkers 9:85–92

    Article  PubMed  CAS  Google Scholar 

  39. Young T, Hutton R, Finn L, Badr S, Palta M (1996) The gender bias in sleep apnea diagnosis. Are women missed because they have different symptoms? Arch Intern Med 156:2445–2451

    Article  PubMed  CAS  Google Scholar 

  40. Ambrogetti A, Olson L, Saunders N (1991) Differences in the symptoms of men and women with obstructive sleep apnea. Aust NZ J Med 21:863–866

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charalampos Mermigkis.

Additional information

Charalampos Mermigkis and Izolde Bouloukaki made an equal contribution to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mermigkis, C., Bouloukaki, I., Mermigkis, D. et al. CRP evolution pattern in CPAP-treated obstructive sleep apnea patients. Does gender play a role?. Sleep Breath 16, 813–819 (2012). https://doi.org/10.1007/s11325-011-0580-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-011-0580-3

Keywords

Navigation