Skip to main content

Advertisement

Log in

Update on the Mechanisms of Gastric Acid Secretion

  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Acid-related disorders represent a major healthcare concern. In recent years, our understanding of the physiologic processes underlying gastric acid secretion has improved notably. The identity of several apical ion transport proteins, which are necessary for acid secretion to take place, has been resolved. The recent developments have uncovered potential therapeutic targets for the treatment of acid-related disorders. This brief review provides an update on the mechanisms of gastric acid secretion, with a particular focus on apical ion transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Duman JG, Pathak NJ, Ladinsky MS, et al.: Three-dimensional reconstruction of cytoplasmic membrane networks in parietal cells. J Cell Sci 2002, 115(Pt 6):1251–1258.

    CAS  PubMed  Google Scholar 

  2. • Shin JM, Munson K, Vagin O, Sachs G: The gastric HK-ATPase: structure, function, and inhibition. Pflugers Arch 2009, 457:609–622. This article provides a detailed review of H + ,K +- ATPase structure and the molecular basis for its pharmacologic inhibition.

    Article  CAS  PubMed  Google Scholar 

  3. Shyjan AW, Canfield VA, Levenson R: Evolution of the Na,K- and H,K-ATPase beta subunit gene family: structure of the murine Na,K-ATPase beta 2 subunit gene. Genomics 1991, 11:435–442.

    Article  CAS  PubMed  Google Scholar 

  4. Maeda M, Oshiman K, Tamura S, Futai M: Human gastric (H+ + K+)-ATPase gene. Similarity to (Na+ + K+)-ATPase genes in exon/intron organization but difference in control region. J Biol Chem 1990, 265:9027–9032.

    CAS  PubMed  Google Scholar 

  5. Abe K, Kaya S, Taniguchi K, et al.: Evidence for a relationship between activity and the tetraprotomeric assembly of solubilized pig gastric H/K-ATPase. J Biochem 2005, 138:293–301.

    Article  CAS  PubMed  Google Scholar 

  6. Vagin O, Denevich S, Sachs G: Plasma membrane delivery of the gastric H,K-ATPase: the role of beta-subunit glycosylation. Am J Physiol Cell Physiol 2003, 285:C968–C976.

    CAS  PubMed  Google Scholar 

  7. Asano S, Kawada K, Kimura T, et al.: The roles of carbohydrate chains of the beta-subunit on the functional expression of gastric H(+),K(+)-ATPase. J Biol Chem 2000, 275:8324–8330.

    Article  CAS  PubMed  Google Scholar 

  8. Toyoshima C, Nomura H: Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 2002, 418:605–611.

    Article  CAS  PubMed  Google Scholar 

  9. Toyoshima C, Nomura H, Sugita Y: Crystal structures of Ca2+-ATPase in various physiological states. Ann N Y Acad Sci 2003, 986:1–8.

    Article  CAS  PubMed  Google Scholar 

  10. Munson K, Garcia R, Sachs G: Inhibitor and ion binding sites on the gastric H,K-ATPase. Biochemistry 2005, 44:5267–5284.

    Article  CAS  PubMed  Google Scholar 

  11. Munson K, Law RJ, Sachs G: Analysis of the gastric H,K ATPase for ion pathways and inhibitor binding sites. Biochemistry 2007, 46:5398–5417.

    Article  CAS  PubMed  Google Scholar 

  12. Olesen C, Picard M, Winther AM, et al.: The structural basis of calcium transport by the calcium pump. Nature 2007, 450:1036–1042.

    Article  CAS  PubMed  Google Scholar 

  13. • Abe K, Tani K, Nishizawa T, Fujiyoshi Y: Inter-subunit interaction of gastric H+,K+-ATPase prevents reverse reaction of the transport cycle. EMBO J 2009, 28:1637–1643. The first three-dimensional structure of H + ,K + -ATPase at a resolution of 6.5Å obtained by electron crystallography.

    Article  CAS  PubMed  Google Scholar 

  14. Durr KL, Abe K, Tavraz NN, Friedrich T: E2P state stabilization by the N-terminal tail of the H,K-ATPase beta-subunit is critical for efficient proton pumping under in vivo conditions. J Biol Chem 2009, 284:20147–20154.

    Article  PubMed  Google Scholar 

  15. Gedda K, Scott D, Besancon M, et al.: Turnover of the gastric H+,K(+)-adenosine triphosphatase alpha subunit and its effect on inhibition of rat gastric acid secretion. Gastroenterology 1995, 109:1134–1141.

    Article  CAS  PubMed  Google Scholar 

  16. Kirchhoff P, Andersson K, Socrates T, et al.: Characteristics of the K+-competitive H+,K+-ATPase inhibitor AZD0865 in isolated rat gastric glands. Am J Physiol Gastrointest Liver Physiol 2006, 291:G838–G843.

    Article  CAS  PubMed  Google Scholar 

  17. Kahrilas PJ, Dent J, Lauritsen K, et al.: A randomized, comparative study of three doses of AZD0865 and esomeprazole for healing of reflux esophagitis. Clin Gastroenterol Hepatol 2007, 5:1385–1391.

    Article  CAS  PubMed  Google Scholar 

  18. Berg AL, Bottcher G, Andersson K, et al.: Early stellate cell activation and veno-occlusive-disease (VOD)-like hepatotoxicity in dogs treated with AR-H047108, an imidazopyridine proton pump inhibitor. Toxicol Pathol 2008, 36:727–737.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Q, Curran ME, Splawski I, et al.: Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 1996, 12:17–23.

    Article  PubMed  Google Scholar 

  20. Lee MP, Ravenel JD, Hu RJ, et al.: Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest 2000, 106:1447–1455.

    Article  CAS  PubMed  Google Scholar 

  21. Pan Q, Ma J, Zhou Q, et al.: KCNQ1 loss-of-function mutation impairs gastric acid secretion in mice. Mol Biol Rep 2009, 37:1329–1333.

    Article  PubMed  Google Scholar 

  22. • Song P, Groos S, Riederer B, et al.: KCNQ1 is the luminal K+ recycling channel during stimulation of gastric acid secretion. J Physiol 2009, 587(Pt 15):3955–3965. The KCNQ1-deficient animal loses its ability to secrete gastric acid. This article provides strong evidence for KCNQ1’s involvement in the process of potassium recycling.

    Article  CAS  PubMed  Google Scholar 

  23. Peretz A, Schottelndreier H, Aharon-Shamgar LB, Attali B: Modulation of homomeric and heteromeric KCNQ1 channels by external acidification. J Physiol 2002, 545(Pt 3):751–766.

    Article  CAS  PubMed  Google Scholar 

  24. Heitzmann D, Koren V, Wagner M, et al.: KCNE beta subunits determine pH sensitivity of KCNQ1 potassium channels. Cell Physiol Biochem 2007, 19(1–4):21–32.

    Article  CAS  PubMed  Google Scholar 

  25. Roepke TK, Anantharam A, Kirchhoff P, et al.: The KCNE2 potassium channel ancillary subunit is essential for gastric acid secretion. J Biol Chem 2006, 281:23740–23747.

    Article  CAS  PubMed  Google Scholar 

  26. Kaufhold MA, Krabbenhoft A, Song P, et al.: Localization, trafficking, and significance for acid secretion of parietal cell Kir4.1 and KCNQ1 K+ channels. Gastroenterology 2008, 134:1058–1069.

    Article  CAS  PubMed  Google Scholar 

  27. Malinowska DH, Sherry AM, Tewari KP, Cuppoletti J: Gastric parietal cell secretory membrane contains PKA- and acid-activated Kir2.1 K+ channels. Am J Physiol Cell Physiol 2004, 286:C495–C506.

    Article  CAS  PubMed  Google Scholar 

  28. Malinowska DH: Cl- channel blockers inhibit acid secretion in rabbit parietal cells. Am J Physiol 1990, 259(4 Pt 1):G536–G543.

    CAS  PubMed  Google Scholar 

  29. • Sidani SM, Kirchhoff P, Socrates T, et al.: DeltaF508 mutation results in impaired gastric acid secretion. J Biol Chem 2007, 282:6068–6074. This article demonstrates that CFTR mutant animals suffer from impaired acid secretion. The channel may be essential for chloride secretion, which is necessary for the creation of concentrated hydrochloric acid.

    Article  CAS  PubMed  Google Scholar 

  30. Guggino WB, Stanton BA: New insights into cystic fibrosis: molecular switches that regulate CFTR. Nat Rev Mol Cell Biol 2006, 7:426–436.

    Article  CAS  PubMed  Google Scholar 

  31. Howard M, Jiang X, Stolz DB, et al.: Forskolin-induced apical membrane insertion of virally expressed, epitope-tagged CFTR in polarized MDCK cells. Am J Physiol Cell Physiol 2000, 279:C375–C382.

    CAS  PubMed  Google Scholar 

  32. Strong TV, Boehm K, Collins FS: Localization of cystic fibrosis transmembrane conductance regulator mRNA in the human gastrointestinal tract by in situ hybridization. J Clin Invest 1994, 93:347–354.

    Article  CAS  PubMed  Google Scholar 

  33. Cid LP, Montrose-Rafizadeh C, Smith DI, et al.: Cloning of a putative human voltage-gated chloride channel (CIC-2) cDNA widely expressed in human tissues. Hum Mol Genet 1995, 4:407–413.

    Article  CAS  PubMed  Google Scholar 

  34. Gyomorey K, Yeger H, Ackerley C, et al.: Expression of the chloride channel ClC-2 in the murine small intestine epithelium. Am J Physiol Cell Physiol 2000, 279:C1787–C1794.

    CAS  PubMed  Google Scholar 

  35. Murray CB, Morales MM, Flotte TR, et al.: CIC-2: a developmentally dependent chloride channel expressed in the fetal lung and downregulated after birth. Am J Respir Cell Mol Biol 1995, 12:597–604.

    CAS  PubMed  Google Scholar 

  36. Lipecka J, Bali M, Thomas A, et al.: Distribution of ClC-2 chloride channel in rat and human epithelial tissues. Am J Physiol Cell Physiol 2002, 282:C805–C816.

    CAS  PubMed  Google Scholar 

  37. Malinowska DH, Kupert EY, Bahinski A, et al.: Cloning, functional expression, and characterization of a PKA-activated gastric Cl- channel. Am J Physiol 1995, 268(1 Pt 1):C191–C200.

    CAS  PubMed  Google Scholar 

  38. Sherry AM, Malinowska DH, Morris RE, et al.: Localization of ClC-2 Cl- channels in rabbit gastric mucosa. Am J Physiol Cell Physiol 2001, 280:C1599–C1606.

    CAS  PubMed  Google Scholar 

  39. Hori K, Takahashi Y, Horikawa N, et al.: Is the ClC-2 chloride channel involved in the Cl- secretory mechanism of gastric parietal cells? FEBS Lett 2004, 575(1–3):105–108.

    Article  CAS  PubMed  Google Scholar 

  40. Bosl MR, Stein V, Hubner C, et al.: Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl(-) channel disruption. EMBO J 2001, 20:1289–1299.

    Article  CAS  PubMed  Google Scholar 

  41. Petrovic S, Ju X, Barone S, et al.: Identification of a basolateral Cl-/HCO3- exchanger specific to gastric parietal cells. Am J Physiol Gastrointest Liver Physiol 2003, 284:G1093–G1103.

    CAS  PubMed  Google Scholar 

  42. Xu J, Henriksnas J, Barone S, et al.: SLC26A9 is expressed in gastric surface epithelial cells, mediates Cl-/HCO3- exchange, and is inhibited by NH4+. Am J Physiol Cell Physiol 2005, 289:C493–C505.

    Article  CAS  PubMed  Google Scholar 

  43. • Xu J, Song P, Miller ML, et al. Deletion of the chloride transporter Slc26a9 causes loss of tubulovesicles in parietal cells and impairs acid secretion in the stomach. Proc Natl Acad Sci U S A 2008, 105:17955–17960. The anion exchanger SLC26A9 may contribute to apical chloride secretion. This article demonstrates that its deletion results in decreased acid secretion.

    Article  CAS  PubMed  Google Scholar 

  44. Dorwart MR, Shcheynikov N, Wang Y, et al.: SLC26A9 is a Cl(-) channel regulated by the WNK kinases. J Physiol 2007, 584(Pt 1):333–345.

    Article  CAS  PubMed  Google Scholar 

  45. Bertrand CA, Zhang R, Pilewski JM, Frizzell RA: SLC26A9 is a constitutively active, CFTR-regulated anion conductance in human bronchial epithelia. J Gen Physiol 2009, 133:421–438.

    Article  CAS  PubMed  Google Scholar 

  46. Li ZQ, Mardh S: Interactions between Ca2+- and cAMP-dependent stimulatory pathways in parietal cells. Biochim Biophys Acta 1996, 1311:133–142.

    Article  PubMed  Google Scholar 

  47. Chew CS, Brown MR: Release of intracellular Ca2+ and elevation of inositol trisphosphate by secretagogues in parietal and chief cells isolated from rabbit gastric mucosa. Biochim Biophys Acta 1986, 888:116–125.

    Article  CAS  PubMed  Google Scholar 

  48. Kobayashi T, Tonai S, Ishihara Y, et al.: Abnormal functional and morphological regulation of the gastric mucosa in histamine H2 receptor-deficient mice. J Clin Invest 2000, 105:1741–1749.

    Article  CAS  PubMed  Google Scholar 

  49. Chew CS: Parietal cell protein kinases. Selective activation of type I cAMP-dependent protein kinase by histamine. J Biol Chem 1985, 260:7540–7550.

    CAS  PubMed  Google Scholar 

  50. Nishizawa T, Nagao T, Iwatsubo T, et al.: Molecular cloning and characterization of a novel chloride intracellular channel-related protein, parchorin, expressed in water-secreting cells. J Biol Chem 2000, 275:11164–11173.

    Article  CAS  PubMed  Google Scholar 

  51. Chew CS, Chen X, Bollag RJ, et al.: Targeted disruption of the Lasp-1 gene is linked to increases in histamine-stimulated gastric HCl secretion. Am J Physiol Gastrointest Liver Physiol 2008, 295:G37–G44.

    Article  CAS  PubMed  Google Scholar 

  52. Tamura A, Kikuchi S, Hata M, et al.: Achlorhydria by ezrin knockdown: defects in the formation/expansion of apical canaliculi in gastric parietal cells. J Cell Biol 2005, 169:21–28.

    Article  CAS  PubMed  Google Scholar 

  53. Ding X, Deng H, Wang D, et al.: Phospho-regulated ACAP4-Ezrin interaction is essential for histamine-stimulated parietal cell secretion. J Biol Chem 2010, 285:18769–18780.

    Article  CAS  PubMed  Google Scholar 

  54. Aihara T, Fujishita T, Kanatani K, et al.: Impaired gastric secretion and lack of trophic responses to hypergastrinemia in M3 muscarinic receptor knockout mice. Gastroenterology 2003, 125:1774–1784.

    Article  CAS  PubMed  Google Scholar 

  55. Yao X, Forte JG: Cell biology of acid secretion by the parietal cell. Annu Rev Physiol 2003, 65:103–131.

    Article  CAS  PubMed  Google Scholar 

  56. Mamiya N, Goldenring JR, Tsunoda Y, et al.: Inhibition of acid secretion in gastric parietal cells by the Ca2+/calmodulin-dependent protein kinase II inhibitor KN-93. Biochem Biophys Res Commun 1993, 195:608–615.

    Article  CAS  PubMed  Google Scholar 

  57. Langhans N, Rindi G, Chiu M, et al.: Abnormal gastric histology and decreased acid production in cholecystokinin-B/gastrin receptor-deficient mice. Gastroenterology 1997, 112:280–286.

    Article  CAS  PubMed  Google Scholar 

  58. Kanai S, Hosoya H, Akimoto S, et al.: Gastric acid secretion in cholecystokinin-1 receptor, -2 receptor, and -1, -2 receptor gene knockout mice. J Physiol Sci 2009, 59:23–29.

    Article  CAS  PubMed  Google Scholar 

  59. Cheng I, Qureshi I, Chattopadhyay N, et al.: Expression of an extracellular calcium-sensing receptor in rat stomach. Gastroenterology 1999, 116:118–126.

    Article  CAS  PubMed  Google Scholar 

  60. Busque SM, Kerstetter JE, Geibel JP, Insogna K: L-type amino acids stimulate gastric acid secretion by activation of the calcium-sensing receptor in parietal cells. Am J Physiol Gastrointest Liver Physiol 2005, 289:G664–G669.

    CAS  PubMed  Google Scholar 

  61. Remy C, Kirchhoff P, Hafner P, et al.: Stimulatory pathways of the calcium-sensing receptor on acid secretion in freshly isolated human gastric glands. Cell Physiol Biochem 2007, 19(1–4):33–42.

    Article  CAS  PubMed  Google Scholar 

  62. Park J, Chiba T, Yamada T: Mechanisms for direct inhibition of canine gastric parietal cells by somatostatin. J Biol Chem 1987, 262:14190–14196.

    CAS  PubMed  Google Scholar 

  63. Zhao CM, Martinez V, Piqueras L, et al.: Control of gastric acid secretion in somatostatin receptor 2 deficient mice: shift from endocrine/paracrine to neurocrine pathways. Endocrinology 2008, 149:498–505.

    Article  CAS  PubMed  Google Scholar 

  64. Sidani S, Kopic S, Socrates T, et al.: AMP-activated protein kinase: a physiological off switch for murine gastric acid secretion. Pflugers Arch 2009.

  65. Hardie DG, Hawley SA, Scott JW: AMP-activated protein kinase—development of the energy sensor concept. J Physiol 2006, 574(Pt 1):7–15.

    Article  CAS  PubMed  Google Scholar 

  66. Kopic S, Corradini S, Sidani S, et al.: Ethanol inhibits gastric acid secretion in rats through increased AMP-kinase activity. Cell Physiol Biochem 2010, 25(2–3):195–202.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

Conflicts of interest: Dr. Kopic: none. Dr. Geibel has received honoraria from Amgen and has stock/stock options in Ardelyx; Dr. Geibel’s institution has received grant support from the Bill and Melinda Gates Foundation, and has patents (planned, pending, or issued) for Amgen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Geibel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopic, S., Geibel, J.P. Update on the Mechanisms of Gastric Acid Secretion. Curr Gastroenterol Rep 12, 458–464 (2010). https://doi.org/10.1007/s11894-010-0137-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-010-0137-9

Keywords

Navigation