Skip to main content

Effects of GLP-1 and Its Analogs on Gastric Physiology in Diabetes Mellitus and Obesity

  • Chapter
  • First Online:
Diabetes: from Research to Clinical Practice

Part of the book series: Advances in Experimental Medicine and Biology ((AIM,volume 1307))

Abstract

The processing of proglucagon in intestinal L cells results in the formation of glucagon, GLP-1, and GLP-2. The GLP-1 molecule becomes active through the effect of proconvertase 1, and it is inactivated by dipeptidyl peptidase IV (DPP-IV), so that the half-life of endogenous GLP-1 is 2–3 min. GLP-1 stimulates insulin secretion from β cells in the islets of Langerhans. Human studies show that infusion of GLP-1 results in slowing of gastric emptying and increased fasting and postprandial gastric volumes. Retardation of gastric emptying reduces postprandial glycemia. Exendin-4 is a peptide agonist of the GLP-1 receptor that promotes insulin secretion. Chemical modifications of exendin-4 and GLP-1 molecules have been accomplished to prolong the half-life of GLP-1 agonists or analogs. This chapter reviews the effects of GLP-1-related drugs used in treatment of diabetes or obesity on gastric motor functions, chiefly gastric emptying. The literature shows that diverse methods have been used to measure effects of the GLP-1-related drugs on gastric emptying, with most studies using the acetaminophen absorption test which essentially measures gastric emptying of liquids during the first hour and capacity to absorb the drug over 4–6 h, expressed as AUC. The most valid measurements by scintigraphy (solids or liquids) and acetaminophen absorption at 30 or 60 min show that GLP-1-related drugs used in diabetes or obesity retard gastric emptying, and this is associated with reduced glycemia and variable effects on food intake and appetite. GLP-1 agonists and analogs are integral to the management of patients with type 2 diabetes mellitus and obesity. The effects on gastric emptying are reduced with long-acting preparations or long-term use of short-acting preparations as a result of tachyphylaxis. The dual agonists targeting GLP-1 and another receptor (GIP) do not retard gastric emptying, based on reports to date. In summary, GLP-1 agonists and analogs are integral to the management of patients with type 2 diabetes mellitus and obesity, and their effects are mediated, at least in part, by retardation of gastric emptying.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta A, Camilleri M, Burton D, O’Neill J, Eckert D, Carlson P et al (2015a) Exenatide in obesity with accelerated gastric emptying: a randomized, pharmacodynamics study. Physiol Rep 3(11):e12610

    PubMed  PubMed Central  Google Scholar 

  • Acosta A, Camilleri M, Shin A, Vazquez-Roque MI, Iturrino J, Burton D et al (2015b) Quantitative gastrointestinal and psychological traits associated with obesity and response to weight-loss therapy. Gastroenterology 148(3):537–546.e4

    PubMed  Google Scholar 

  • Adam TCM, Westerterp-Plantenga MS (2005) Glucagon-like peptide-1 release and satiety after a nutrient challenge in normal-weight and obese subjects. Br J Nutr 93(6):845–851

    CAS  PubMed  Google Scholar 

  • Alvarez E, Martínez MD, Roncero I, Chowen JA, García-Cuartero B, Gispert JD et al (2005) The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem. J Neurochem 92(4):798–806

    CAS  PubMed  Google Scholar 

  • Ambery P, Parker VE, Stumvoll M, Posch MG, Heise T, Plum-Moerschel L et al (2018) MEDI0382, a GLP-1 and glucagon receptor dual agonist, in obese or overweight patients with type 2 diabetes: a randomised, controlled, double-blind, ascending dose and phase 2a study. Lancet 391(10140):2607–2618

    CAS  PubMed  Google Scholar 

  • Bækdal TA, Borregaard J, Hansen CW, Thomsen M, Anderson TW (2019) Effect of Oral Semaglutide on the pharmacokinetics of lisinopril, warfarin, digoxin, and metformin in healthy subjects. Clin Pharmacokinet 58(9):1193–1203

    PubMed  PubMed Central  Google Scholar 

  • Barrington P, Chien JY, Showalter HDH, Schneck K, Cui S, Tibaldi F et al (2011) A 5-week study of the pharmacokinetics and pharmacodynamics of LY2189265, a novel, long-acting glucagon-like peptide-1 analogue, in patients with type 2 diabetes. Diabetes Obes Metab 13(5):426–433

    CAS  PubMed  Google Scholar 

  • Becker RHA, Stechl J, Steinstraesser A, Golor G, Pellissier F (2015) Lixisenatide reduces postprandial hyperglycaemia via gastrostatic and insulinotropic effects. Diabetes Metab Res Rev 31(6):610–618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bronden A, Alber A, Rohde U, Gasbjerg LS, Rehfeld JF, Holst JJ et al (2018) The bile acid-sequestering resin sevelamer eliminates the acute GLP-1 stimulatory effect of endogenously released bile acids in patients with type 2 diabetes. Diabetes Obes Metab 20(2):362–369

    CAS  PubMed  Google Scholar 

  • Bunck MC, Diamant M, Cornér A, Eliasson B, Malloy JL, Shaginian RM et al (2009) One-year treatment with exenatide improves beta-cell function, compared with insulin glargine, in metformin-treated type 2 diabetic patients: a randomized, controlled trial. Diabetes Care 32(5):762–768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buse JB, Henry RR, Han J, Kim DD, Fineman MS, Baron AD et al (2004) Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 27(11):2628–2635

    CAS  PubMed  Google Scholar 

  • Carr RD, Larsen MO, Jelic K, Lindgren O, Vikman J, Holst JJ et al (2010) Secretion and dipeptidyl peptidase-4-mediated metabolism of incretin hormones after a mixed meal or glucose ingestion in obese compared to lean, nondiabetic men. J Clin Endocrinol Metab 95(2):872–878

    CAS  PubMed  Google Scholar 

  • Cervera A, Wajcberg E, Sriwijitkamol A, Fernandez M, Zuo P, Triplitt C et al (2008) Mechanism of action of exenatide to reduce postprandial hyperglycemia in type 2 diabetes. Am J Physiol Endocrinol Metab 294(5):E846–E852

    CAS  PubMed  Google Scholar 

  • Chedid V, Vijayvargiya P, Carlson P, Van Malderen K, Acosta A, Zinsmeister A et al (2018) Allelic variant in the glucagon-like peptide 1 receptor gene associated with greater effect of liraglutide and exenatide on gastric emptying: a pilot pharmacogenetics study. Neurogastroenterol Motil 30(7):e13313-e

    Google Scholar 

  • Coskun T, Sloop KW, Loghin C, Alsina-Fernandez J, Urva S, Bokvist KB et al (2018) LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol Metab 18:3–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings DE, Overduin J (2007) Gastrointestinal regulation of food intake. J Clin Invest 117(1):13–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies M, Pieber TR, Hartoft-Nielsen M-L, Hansen OKH, Jabbour S, Rosenstock J (2017) Effect of oral semaglutide compared with placebo and subcutaneous semaglutide on glycemic control in patients with type 2 diabetes: a randomized clinical trial. JAMA 318(15):1460–1470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deane AM, Nguyen NQ, Stevens JE, Fraser RJL, Holloway RH, Besanko LK et al (2010a) Endogenous glucagon-like peptide-1 slows gastric emptying in healthy subjects, attenuating postprandial glycemia. J Clin Endocrinol Metab 95(1):215–221

    CAS  PubMed  Google Scholar 

  • Deane AM, Chapman MJ, Fraser RJL, Summers MJ, Zaknic AV, Storey JP et al (2010b) Effects of exogenous glucagon-like peptide-1 on gastric emptying and glucose absorption in the critically ill: relationship to glycemia. Crit Care Med 38(5):1261–1269

    CAS  PubMed  Google Scholar 

  • DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD (2005) Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 28(5):1092–1100

    CAS  PubMed  Google Scholar 

  • DeFronzo RA, Okerson T, Viswanathan P, Guan X, Holcombe JH, MacConell L (2008) Effects of exenatide versus sitagliptin on postprandial glucose, insulin and glucagon secretion, gastric emptying, and caloric intake: a randomized, cross-over study. Curr Med Res Opin 24(10):2943–2952

    CAS  PubMed  Google Scholar 

  • Degen L, Oesch S, Matzinger D, Drewe J, Knupp M, Zimmerli F et al (2006) Effects of a preload on reduction of food intake by GLP-1 in healthy subjects. Digestion 74(2):78–84

    CAS  PubMed  Google Scholar 

  • Degn KB, Juhl CB, Sturis J, Jakobsen G, Brock B, Chandramouli V et al (2004) One week’s treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and alpha- and beta-cell function and reduces endogenous glucose release in patients with type 2 diabetes. Diabetes 53(5):1187–1194

    CAS  PubMed  Google Scholar 

  • Dejgaard TF, Frandsen CS, Hansen TS, Almdal T, Urhammer S, Pedersen-Bjergaard U et al (2016) Efficacy and safety of liraglutide for overweight adult patients with type 1 diabetes and insufficient glycaemic control (Lira-1): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 4(3):221–232

    CAS  PubMed  Google Scholar 

  • Delgado-Aros S, Kim D-Y, Burton DD, Thomforde GM, Stephens D, Brinkmann BH et al (2002) Effect of GLP-1 on gastric volume, emptying, maximum volume ingested, and postprandial symptoms in humans. Am J Physiol Gastrointest Liver Physiol 282(3):G424–GG31

    CAS  PubMed  Google Scholar 

  • Delgado-Aros S, Vella A, Camilleri M, Low PA, Burton DD, Thomforde GM et al (2003) Effects of glucagon-like peptide-1 and feeding on gastric volumes in diabetes mellitus with cardio-vagal dysfunction. Neurogastroenterol Motil 15(4):435–443

    CAS  PubMed  Google Scholar 

  • Diakogiannaki E, Gribble FM, Reimann F (2012) Nutrient detection by incretin hormone secreting cells. Physiol Behav 106(3):387–393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drucker DJ (2003) Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol 17(2):161–171

    CAS  PubMed  Google Scholar 

  • Drucker DJ, Buse JB, Taylor K, Kendall DM, Trautmann M, Zhuang D et al (2008) Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 372(9645):1240–1250

    CAS  PubMed  Google Scholar 

  • Fineman MS, Mace KF, Diamant M, Darsow T, Cirincione BB, Booker Porter TK et al (2012) Clinical relevance of anti-exenatide antibodies: safety, efficacy and cross-reactivity with long-term treatment. Diabetes Obes Metab 14(6):546–554

    CAS  PubMed  Google Scholar 

  • Flint A, Raben A, Astrup A, Holst JJ (1998) Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 101(3):515–520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flint A, Raben A, Ersbøll AK, Holst JJ, Astrup A (2001) The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int J Obes Relat Metab Disord 25(6):781–792

    CAS  PubMed  Google Scholar 

  • Flint A, Kapitza C, Hindsberger C, Zdravkovic M (2011) The once-daily human glucagon-like peptide-1 (GLP-1) analog liraglutide improves postprandial glucose levels in type 2 diabetes patients. Adv Ther 28(3):213–226

    CAS  PubMed  Google Scholar 

  • Frias JP, Nauck MA, Van J, Kutner ME, Cui X, Benson C et al (2018) Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 392(10160):2180–2193

    CAS  PubMed  Google Scholar 

  • Garber AJ (2011) Long-acting glucagon-like peptide 1 receptor agonists: a review of their efficacy and tolerability. Diabetes Care 34(Suppl 2):S279–SS84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garber A, Henry RR, Ratner R, Hale P, Chang CT, Bode B et al (2011) Liraglutide, a once-daily human glucagon-like peptide 1 analogue, provides sustained improvements in glycaemic control and weight for 2 years as monotherapy compared with glimepiride in patients with type 2 diabetes. Diabetes Obes Metab 13(4):348–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gasbjerg LS, Helsted MM, Hartmann B, Jensen MH, Gabe MBN, Sparre-Ulrich AH et al (2019) Separate and combined glucometabolic effects of endogenous glucose-dependent Insulinotropic polypeptide and glucagon-like peptide 1 in healthy individuals. Diabetes 68(5):906–917

    CAS  Google Scholar 

  • Gentilella R, Pechtner V, Corcos A, Consoli A (2019) Glucagon-like peptide-1 receptor agonists in type 2 diabetes treatment: are they all the same? Diabetes Metab Res Rev 35(1):e3070-e

    Google Scholar 

  • Gibbs J, Young RC, Smith GP (1973) Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 84(3):488–495

    CAS  Google Scholar 

  • Gutzwiller JP, Drewe J, Göke B, Schmidt H, Rohrer B, Lareida J et al (1999) Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Phys 276(5):R1541–R15R4

    CAS  Google Scholar 

  • Halawi H, Khemani D, Eckert D, O’Neill J, Kadouh H, Grothe K et al (2017) Effects of liraglutide on weight, satiation, and gastric functions in obesity: a randomised, placebo-controlled pilot trial. Lancet Gastroenterol Hepatol 2(12):890–899

    PubMed  Google Scholar 

  • Halim MA, Degerblad M, Sundbom M, Karlbom U, Holst JJ, Webb D-L et al (2018) Glucagon-like peptide-1 inhibits prandial gastrointestinal motility through myenteric neuronal mechanisms in humans. J Clin Endocrinol Metab 103(2):575–585

    PubMed  Google Scholar 

  • Hayes MR, Bradley L, Grill HJ (2009) Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling. Endocrinology 150(6):2654–2659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hjerpsted JB, Flint A, Brooks A, Axelsen MB, Kvist T, Blundell J (2018) Semaglutide improves postprandial glucose and lipid metabolism, and delays first-hour gastric emptying in subjects with obesity. Diabetes Obes Metab 20(3):610–619

    CAS  PubMed  Google Scholar 

  • Holst JJ (2013) Incretin hormones and the satiation signal. Int J Obes 37(9):1161–1168

    CAS  Google Scholar 

  • Holst JJ (2019) From the incretin concept and the discovery of GLP-1 to today’s diabetes therapy. Front Endocrinol (Lausanne) 10:260

    Google Scholar 

  • Holst JJ, Gribble F, Horowitz M, Rayner CK (2016) Roles of the gut in glucose homeostasis. Diabetes Care 39(6):884–892

    CAS  PubMed  Google Scholar 

  • Horowitz M, Flint A, Jones KL, Hindsberger C, Rasmussen MF, Kapitza C et al (2012) Effect of the once-daily human GLP-1 analogue liraglutide on appetite, energy intake, energy expenditure and gastric emptying in type 2 diabetes. Diabetes Res Clin Pract 97(2):258–266

    CAS  PubMed  Google Scholar 

  • Horowitz M, Rayner CK, Jones KL (2013) Mechanisms and clinical efficacy of lixisenatide for the management of type 2 diabetes. Adv Ther 30(2):81–101

    CAS  PubMed  Google Scholar 

  • Imeryüz N, Yeğen BC, Bozkurt A, Coşkun T, Villanueva-Peñacarrillo ML, Ulusoy NB (1997) Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Phys 273(4):G920–G9G7

    Google Scholar 

  • Jones KL, Rigda RS, Buttfield MDM, Hatzinikolas S, Pham HT, Marathe CS et al (2019) Effects of lixisenatide on postprandial blood pressure, gastric emptying and glycaemia in healthy people and people with type 2 diabetes. Diabetes Obes Metab 21(5):1158–1167

    CAS  PubMed  Google Scholar 

  • Jones KL, Huynh LQ, Hatzinikolas S, Rigda RS, Phillips LK, Pham HT et al (2020) Exenatide once weekly slows gastric emptying of solids and liquids in healthy, overweight, subjects under steady-state concentrations. Diabetes Obes Metab. https://doi.org/10.1111/dom.13956

  • Kolterman OG, Kim DD, Shen L, Ruggles JA, Nielsen LL, Fineman MS et al (2005) Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am J Health Syst Pharm 62(2):173–181

    CAS  PubMed  Google Scholar 

  • Kothare PA, Soon DKW, Linnebjerg H, Park S, Chan C, Yeo A et al (2005) Effect of exenatide on the steady-state pharmacokinetics of digoxin. J Clin Pharmacol 45(9):1032–1037

    CAS  PubMed  Google Scholar 

  • Kothare PA, Linnebjerg H, Skrivanek Z, Reddy S, Mace K, Pena A et al (2007) Exenatide effects on statin pharmacokinetics and lipid response. Int J Clin Pharmacol Ther 45(2):114–120

    CAS  PubMed  Google Scholar 

  • le Roux CW, Astrup A, Fujioka K, Greenway F, Lau DCW, Van Gaal L et al (2017) 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet 389(10077):1399–1409

    PubMed  Google Scholar 

  • Linnebjerg H, Park S, Kothare PA, Trautmann ME, Mace K, Fineman M et al (2008) Effect of exenatide on gastric emptying and relationship to postprandial glycemia in type 2 diabetes. Regul Pept 151(1–3):123–129

    CAS  PubMed  Google Scholar 

  • Linnebjerg H, Kothare P, Park S, Mace K, Mitchell M (2009) The effect of exenatide on lisinopril pharmacodynamics and pharmacokinetics in patients with hypertension. Int J Clin Pharmacol Ther 47(11):651–658

    CAS  PubMed  Google Scholar 

  • Little TJ, Pilichiewicz AN, Russo A, Phillips L, Jones KL, Nauck MA et al (2006) Effects of intravenous glucagon-like peptide-1 on gastric emptying and intragastric distribution in healthy subjects: relationships with postprandial glycemic and insulinemic responses. J Clin Endocrinol Metab 91(5):1916–1923

    CAS  PubMed  Google Scholar 

  • Lorenz M, Pfeiffer C, Steinstrasser A, Becker RH, Rutten H, Ruus P et al (2013) Effects of lixisenatide once daily on gastric emptying in type 2 diabetes--relationship to postprandial glycemia. Regul Pept 185:1–8

    CAS  PubMed  Google Scholar 

  • Lu WJ, Yang Q, Sun W, Woods SC, D’Alessio D, Tso P (2007) The regulation of the lymphatic secretion of glucagon-like peptide-1 (GLP-1) by intestinal absorption of fat and carbohydrate. Am J Physiol Gastrointest Liver Physiol 293(5):G963–GG71

    CAS  PubMed  Google Scholar 

  • Madsbad S (2016) Review of head-to-head comparisons of glucagon-like peptide-1 receptor agonists. Diabetes Obes Metab 18(4):317–332

    CAS  PubMed  Google Scholar 

  • Marathe CS, Rayner CK, Jones KL, Horowitz M (2011) Effects of GLP-1 and incretin-based therapies on gastrointestinal motor function. Exp Diabetes Res 2011:279530

    PubMed  PubMed Central  Google Scholar 

  • Marathe CS, Rayner CK, Wu T, Jones KL, Horowitz M (2018) Gastric emptying and the personalized management of type 1 diabetes. J Clin Endocrinol Metab 103(9):3503–3506

    PubMed  Google Scholar 

  • Mathiesen DS, Bagger JI, Bergmann NC, Lund A, Christensen MB, Vilsbøll T et al (2019) The effects of dual GLP-1/GIP receptor agonism on glucagon secretion-a review. Int J Mol Sci 20(17):4092

    CAS  PubMed Central  Google Scholar 

  • Meier JJ (2012) GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 8(12):728–742

    CAS  PubMed  Google Scholar 

  • Meier JJ, Kemmeries G, Holst JJ, Nauck MA (2005) Erythromycin antagonizes the deceleration of gastric emptying by glucagon-like peptide 1 and unmasks its insulinotropic effect in healthy subjects. Diabetes 54(7):2212–2218

    CAS  PubMed  Google Scholar 

  • Meier JJ, Rosenstock J, Hincelin-Mery A, Roy-Duval C, Delfolie A, Coester HV et al (2015) Contrasting effects of lixisenatide and liraglutide on postprandial glycemic control, gastric emptying, and safety parameters in patients with type 2 diabetes on Optimized insulin glargine with or without metformin: a randomized, open-label trial. Diabetes Care 38(7):1263–1273

    CAS  PubMed  Google Scholar 

  • Moller DE (2001) New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414(6865):821–827

    CAS  PubMed  Google Scholar 

  • Monnier L, Lapinski H, Colette C (2003) Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA(1c). Diabetes Care 26(3):881–885

    PubMed  Google Scholar 

  • Nakatani Y, Maeda M, Matsumura M, Shimizu R, Banba N, Aso Y et al (2017) Effect of GLP-1 receptor agonist on gastrointestinal tract motility and residue rates as evaluated by capsule endoscopy. Diabetes Metab 43(5):430–437

    CAS  PubMed  Google Scholar 

  • Näslund E, Barkeling B, King N, Gutniak M, Blundell JE, Holst JJ et al (1999) Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord 23(3):304–311

    PubMed  Google Scholar 

  • Nauck MA, Niedereichholz U, Ettler R, Holst JJ, Orskov C, Ritzel R et al (1997) Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Phys 273(5):E981–E9E8

    CAS  Google Scholar 

  • Nauck M, Frid A, Hermansen K, Shah NS, Tankova T, Mitha IH et al (2009) Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care 32(1):84–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nauck MA, Kemmeries G, Holst JJ, Meier JJ (2011) Rapid tachyphylaxis of the glucagon-like peptide 1-induced deceleration of gastric emptying in humans. Diabetes 60(5):1561–1565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Odunsi ST, Camilleri M (2009) Selected interventions in nuclear medicine: gastrointestinal motor functions. Semin Nucl Med 39(3):186–194

    PubMed  PubMed Central  Google Scholar 

  • Odunsi ST, Camilleri M, Szarka LA, Zinsmeister AR (2009) Optimizing analysis of stable isotope breath tests to estimate gastric emptying of solids. Neurogastroenterol Motil 21(7):706–e38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parker VER, Robertson D, Wang T, Hornigold DC, Petrone M, Cooper AT et al (2019) Efficacy, safety, and mechanistic insights of cotadutide a dual receptor glucagon-like peptide-1 and glucagon agonist. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgz047

  • Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M et al (2015) A randomized, controlled trial of 3.0 mg of Liraglutide in weight management. N Engl J Med 373(1):11–22

    PubMed  Google Scholar 

  • Ramesh N, Mortazavi S, Unniappan S (2016) Nesfatin-1 stimulates cholecystokinin and suppresses peptide YY expression and secretion in mice. Biochem Biophys Res Commun 472(1):201–208

    CAS  PubMed  Google Scholar 

  • Read NW, McFarlane A, Kinsman RI, Bates TE, Blackhall NW, Farrar GB et al (1984) Effect of infusion of nutrient solutions into the ileum on gastrointestinal transit and plasma levels of neurotensin and enteroglucagon. Gastroenterology 86(2):274–280

    CAS  PubMed  Google Scholar 

  • Ritzel R, Orskov C, Holst JJ, Nauck MA (1995) Pharmacokinetic, insulinotropic, and glucagonostatic properties of GLP-1 [7-36 amide] after subcutaneous injection in healthy volunteers. Dose-response-relationships. Diabetologia 38(6):720–725

    CAS  PubMed  Google Scholar 

  • Russell-Jones D, Vaag A, Schmitz O, Sethi BK, Lalic N, Antic S et al (2009) Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU): a randomised controlled trial. Diabetologia 52(10):2046–2055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schirra J, Göke B (2005) The physiological role of GLP-1 in human: incretin, ileal brake or more? Regul Pept 128(2):109–115

    CAS  PubMed  Google Scholar 

  • Schirra J, Wank U, Arnold R, Göke B, Katschinski M (2002) Effects of glucagon-like peptide-1(7-36)amide on motility and sensation of the proximal stomach in humans. Gut 50(3):341–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schirra J, Nicolaus M, Roggel R, Katschinski M, Storr M, Woerle HJ et al (2006) Endogenous glucagon-like peptide 1 controls endocrine pancreatic secretion and antro-pyloro-duodenal motility in humans. Gut 55(2):243–251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schirra J, Nicolaus M, Woerle HJ, Struckmeier C, Katschinski M, Göke B (2009) GLP-1 regulates gastroduodenal motility involving cholinergic pathways. Neurogastroenterol Motil 21(6):609–e22

    CAS  PubMed  Google Scholar 

  • Schmitt C, Portron A, Jadidi S, Sarkar N, DiMarchi R (2017) Pharmacodynamics, pharmacokinetics and safety of multiple ascending doses of the novel dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-1 agonist RG7697 in people with type 2 diabetes mellitus. Diabetes Obes Metab 19(10):1436–1445

    CAS  PubMed  Google Scholar 

  • Soon D, Kothare PA, Linnebjerg H, Park S, Yuen E, Mace KF et al (2006) Effect of exenatide on the pharmacokinetics and pharmacodynamics of warfarin in healthy Asian men. J Clin Pharmacol 46(10):1179–1187

    CAS  PubMed  Google Scholar 

  • Steinert RE, Meyer-Gerspach AC, Beglinger C (2012) The role of the stomach in the control of appetite and the secretion of satiation peptides. Am J Physiol Endocrinol Metab 302(6):E666–EE73

    CAS  PubMed  Google Scholar 

  • Steinert RE, Beglinger C, Langhans W (2016) Intestinal GLP-1 and satiation: from man to rodents and back. Int J Obes 40(2):198–205

    CAS  Google Scholar 

  • Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N (2017) Ghrelin, CCK, GLP-1, and PYY(3-36): secretory controls and physiological roles in eating and Glycemia in health, obesity, and after RYGB. Physiol Rev 97(1):411–463

    PubMed  Google Scholar 

  • Stevens JE, Horowitz M, Deacon CF, Nauck M, Rayner CK, Jones KL (2012) The effects of sitagliptin on gastric emptying in healthy humans – a randomised, controlled study. Aliment Pharmacol Ther 36(4):379–390

    CAS  PubMed  Google Scholar 

  • Szarka LA, Camilleri M (2009) Methods for measurement of gastric motility. Am J Physiol Gastrointest Liver Physiol 296(3):G461–G475

    CAS  PubMed  Google Scholar 

  • Szarka LA, Camilleri M, Vella A, Burton D, Baxter K, Simonson J et al (2008) A stable isotope breath test with a standard meal for abnormal gastric emptying of solids in the clinic and in research. Clin Gastroenterol Hepatol 6(6):635–643.e1

    PubMed  PubMed Central  Google Scholar 

  • Szayna M, Doyle ME, Betkey JA, Holloway HW, Spencer RG, Greig NH et al (2000) Exendin-4 decelerates food intake, weight gain, and fat deposition in Zucker rats. Endocrinology 141(6):1936–1941

    CAS  PubMed  Google Scholar 

  • Tibble CA, Cavaiola TS, Henry RR (2013) Longer acting GLP-1 receptor agonists and the potential for improved cardiovascular outcomes: a review of current literature. Expert Rev Endocrinol Metab 8(3):247–259

    CAS  PubMed  Google Scholar 

  • Trujillo JM, Nuffer W (2014) Albiglutide: a new GLP-1 receptor agonist for the treatment of type 2 diabetes. Ann Pharmacother 48(11):1494–1501

    CAS  PubMed  Google Scholar 

  • Uccellatore A, Genovese S, Dicembrini I, Mannucci E, Ceriello A (2015) Comparison review of short-acting and long-acting glucagon-like peptide-1 receptor agonists. Diabetes Ther 6(3):239–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Umapathysivam MM, Lee MY, Jones KL, Annink CE, Cousins CE, Trahair LG et al (2014) Comparative effects of prolonged and intermittent stimulation of the glucagon-like peptide 1 receptor on gastric emptying and glycemia. Diabetes 63(2):785–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urva S, Nauck MA, Coskun T, Cui X, Haupt A, Benson C et al (2019) 58-OR: the novel dual GIP and GLP-1 receptor agonist tirzepatide transiently delays gastric emptying similarly to a selective long-acting GLP-1 receptor agonist. Diabetes 68(Supplement 1):58-OR

    Google Scholar 

  • van Can J, Sloth B, Jensen CB, Flint A, Blaak EE, Saris WHM (2014) Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults. Int J Obes 38(6):784–793

    Google Scholar 

  • Vella A, Bock G, Giesler PD, Burton DB, Serra DB, Saylan ML et al (2007) Effects of dipeptidyl peptidase-4 inhibition on gastrointestinal function, meal appearance, and glucose metabolism in type 2 diabetes. Diabetes 56(5):1475–1480

    CAS  PubMed  Google Scholar 

  • Vella A, Bock G, Giesler PD, Burton DB, Serra DB, Saylan ML et al (2008) The effect of dipeptidyl peptidase-4 inhibition on gastric volume, satiation and enteroendocrine secretion in type 2 diabetes: a double-blind, placebo-controlled crossover study. Clin Endocrinol 69(5):737–744

    CAS  Google Scholar 

  • Verdich C, Toubro S, Buemann B, Lysgård Madsen J, Juul Holst J, Astrup A (2001) The role of postprandial releases of insulin and incretin hormones in meal-induced satiety--effect of obesity and weight reduction. Int J Obes Relat Metab Disord 25(8):1206–1214

    CAS  PubMed  Google Scholar 

  • Vilsbøll T, Agersø H, Lauritsen T, Deacon CF, Aaboe K, Madsbad S et al (2006) The elimination rates of intact GIP as well as its primary metabolite, GIP 3-42, are similar in type 2 diabetic patients and healthy subjects. Regul Pept 137(3):168–172

    PubMed  Google Scholar 

  • Vrang N, Larsen PJ (2010) Preproglucagon derived peptides GLP-1, GLP-2 and oxyntomodulin in the CNS: role of peripherally secreted and centrally produced peptides. Prog Neurobiol 92(3):442–462

    CAS  PubMed  Google Scholar 

  • Vrang N, Phifer CB, Corkern MM, Berthoud H-R (2003) Gastric distension induces c-Fos in medullary GLP-1/2-containing neurons. Am J Physiol Regul Integr Comp Physiol 285(2):R470–R4R8

    CAS  PubMed  Google Scholar 

  • Wettergren A, Wøjdemann M, Holst JJ (1998) Glucagon-like peptide-1 inhibits gastropancreatic function by inhibiting central parasympathetic outflow. Am J Phys 275(5):G984–GG92

    CAS  Google Scholar 

  • Willms B, Werner J, Holst JJ, Orskov C, Creutzfeldt W, Nauck MA (1996) Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)-(7-36) amide in type 2 (noninsulin-dependent) diabetic patients. J Clin Endocrinol Metab 81(1):327–332

    CAS  PubMed  Google Scholar 

  • Zinman B, Hoogwerf BJ, Durán García S, Milton DR, Giaconia JM, Kim DD et al (2007) The effect of adding exenatide to a thiazolidinedione in suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 146(7):477–485

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. Cindy Stanislav for excellent secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Camilleri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maselli, D.B., Camilleri, M. (2020). Effects of GLP-1 and Its Analogs on Gastric Physiology in Diabetes Mellitus and Obesity. In: Islam, M.S. (eds) Diabetes: from Research to Clinical Practice. Advances in Experimental Medicine and Biology(), vol 1307. Springer, Cham. https://doi.org/10.1007/5584_2020_496

Download citation

  • DOI: https://doi.org/10.1007/5584_2020_496

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51088-6

  • Online ISBN: 978-3-030-51089-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics