Skip to main content

Advertisement

Log in

Peripheral Arterial Disease in Diabetes: Is There a Role for Genetics?

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Atherosclerotic occlusion of vessels outside of the heart is commonly referred to as peripheral arterial disease (PAD). The lower extremity is the most common site of PAD and its development is associated with the same risk factors involved in general atherosclerosis. However, there is emerging evidence that other risk factors may play a key role in the development of PAD. Over the past decade polymorphism in a number of genes has been shown to contribute to the risk of developing PAD. These genes can be classified into proartherosclerosis or proatherothrombosis based on the known gene function. Moreover, they can be categorized as “novel” polymorphism when the function of the genes is not known or when the specific gene within an associated genetic locus is not known. It is intriguing that not only are gene polymorphisms associated with PAD being identified, but more recently studies are now finding gene polymorphisms that may be important in development of this syndrome only in the contest of certain environmental factors such as diabetes. Currently how these gene–environment interactions contribute to the pathogenesis of PAD is poorly understood but will likely play a critical role in future understanding of this complex disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gerhard M, Baum P, Raby KE. Peripheral arterial-vascular disease in women: prevalence, prognosis, and treatment. Cardiology. 1995;86(4):349–55.

    Article  PubMed  CAS  Google Scholar 

  2. Kannel WB, McGee DL. Update on some epidemiologic features of intermittent claudication: the Framingham Study. J Am Geriatr Soc. 1985;33(1):13–8.

    PubMed  CAS  Google Scholar 

  3. Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG, Creager MA, Olin JW, et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 2001;286(11):1317–24.

    Article  PubMed  CAS  Google Scholar 

  4. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). Eur J Vasc Endovasc Surg. 2007;33 Suppl 1:S1–S75.

    Article  PubMed  Google Scholar 

  5. Fowkes FG. Peripheral vascular disease: a public health perspective. J Public Health Med. 1990;12(3–4):152–9.

    PubMed  CAS  Google Scholar 

  6. Hiatt WR, Hoag S, Hamman RF. Effect of diagnostic criteria on the prevalence of peripheral arterial disease. The San Luis Valley Diabetes Study. Circulation. 1995;91(5):1472–9.

    PubMed  CAS  Google Scholar 

  7. Graham IM, Daly LE, Refsum HM, Robinson K, Brattstrom LE, Ueland PM, et al. Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA. 1997;277(22):1775–81.

    Article  PubMed  CAS  Google Scholar 

  8. Darius H, Pittrow D, Haberl R, Trampisch HJ, Schuster A, Lange S, et al. Are elevated homocysteine plasma levels related to peripheral arterial disease? Results from a cross-sectional study of 6880 primary care patients. Eur J Clin Invest. 2003;33(9):751–7.

    Article  PubMed  CAS  Google Scholar 

  9. Association AD. Peripheral arterial disease in people with diabetes. Clin Diabetes. 2004;22(4):181–9.

    Article  Google Scholar 

  10. Keen H, Clark C, Laakso M. Reducing the burden of diabetes: managing cardiovascular disease†. Diab/Metab Res Rev. 1999;15(3):186–96.

    Article  CAS  Google Scholar 

  11. Yi-Der J, Yi-Cheng C, Yen-Feng C, Tien-Jyun C, Hung-Yuan L, Wen-Hsing L, et al. SLC2A10 genetic polymorphism predicts development of peripheral arterial disease in patients with type 2 diabetes. SLC2A10 and PADin type 2 diabetes. BMC Med Genet. 11:126–32.

  12. Carmelli D, Fabsitz RR, Swan GE, Reed T, Miller B, Wolf PA. Contribution of genetic and environmental influences to ankle-brachial blood pressure index in the NHLBI Twin Study. National Heart, Lung, and Blood Institute. Am J Epidemiol. 2000;151(5):452–8.

    PubMed  CAS  Google Scholar 

  13. Newman AB, Shemanski L, Manolio TA, Cushman M, Mittelmark M, Polak JF, et al. Ankle-arm index as a predictor of cardiovascular disease and mortality in the Cardiovascular Health Study. The Cardiovascular Health Study Group. Arterioscler Thromb Vasc Biol. 1999;19(3):538–45.

    PubMed  CAS  Google Scholar 

  14. Ouriel K. Peripheral arterial disease. Lancet. 2001;358(9289):1257–64.

    Article  PubMed  CAS  Google Scholar 

  15. Findley CM, Mitchell RG, Duscha BD, Annex BH, Kontos CD. Plasma levels of soluble Tie2 and vascular endothelial growth factor distinguish critical limb ischemia from intermittent claudication in patients with peripheral arterial disease. J Am Coll Cardiol. 2008;52(5):387–93.

    Article  PubMed  CAS  Google Scholar 

  16. McDermott MM, Lloyd-Jones DM. The role of biomarkers and genetics in peripheral arterial disease. J Am Coll Cardiol. 2009;54(14):1228–37.

    Article  PubMed  CAS  Google Scholar 

  17. Wilson AM, Kimura E, Harada RK, Nair N, Narasimhan B, Meng X-Y, et al. {beta}2-Microglobulin as a biomarker in peripheral arterial disease: proteomic profiling and clinical studies. Circulation. 2007;116(12):1396–403.

    Article  PubMed  CAS  Google Scholar 

  18. McDermott MM, Greenland P, Liu K, Guralnik JM, Celic L, Criqui MH, et al. The ankle brachial index is associated with leg function and physical activity: the Walking and Leg Circulation Study. Ann Intern Med. 2002;136(12):873–83.

    PubMed  Google Scholar 

  19. Imparato AM, Kim GE, Davidson T, Crowley JG. Intermittent claudication: its natural course. Surgery. 1975;78(6):795–9.

    PubMed  CAS  Google Scholar 

  20. Boyd AM. The natural course of arteriosclerosis of the lower extremities. Proc R Soc Med. 1962;55:591–3.

    PubMed  CAS  Google Scholar 

  21. Cronenwett JL, Warner KG, Zelenock GB, Whitehouse Jr WM, Graham LM, Lindenauer M, et al. Intermittent claudication. Current results of nonoperative management. Arch Surg. 1984;119(4):430–6.

    PubMed  CAS  Google Scholar 

  22. Sheehan P. Peripheral arterial disease in people with diabetes: consensus statement recommends screening. Clin Diabetes. 2004;22(4):179–80.

    Article  Google Scholar 

  23. Jude EB, Oyibo SO, Chalmers N, Boulton AJM. Peripheral arterial disease in diabetic and nondiabetic patients. Diab Care. 2001;24(8):1433–7.

    Article  CAS  Google Scholar 

  24. Melton LJ, 3rd, Mackey KM, Palumbo PJ, Elveback LR. Incidence and prevalence of clinical peripheral vascular disease in a population-based cohort of diabetic patients. Diab Care. 1980;3(6):650–4.

    Article  Google Scholar 

  25. Beks PJ, Mackaay AJ, de Neeling JN, de Vries H, Bouter LM, Heine RJ. Peripheral arterial disease in relation to glycaemic level in an elderly Caucasian population: the Hoorn study. Diabetologia. 1995;38(1):86–96.

    Article  PubMed  CAS  Google Scholar 

  26. Welborn TA, Kruiman M, McCann V, Stanton K, Constable IJ. Clinical macrovascular disease in Caucasoid diabetic subjects: logistic regression analysis of risk variables. Diabetologia. 1984;27(6):568–73.

    Article  PubMed  CAS  Google Scholar 

  27. Jude EB, Eleftheriadou I, Tentolouris N. Peripheral arterial disease in diabetes—a review. Diab Med. 27(1):4–14.

  28. Jude EB, Eleftheriadou I, Tentolouris N. Peripheral arterial disease in diabetes—a review. Diabet Med. 2010;27(1):4–14.

    Article  PubMed  CAS  Google Scholar 

  29. Walters DP, Gatling WA, Mullee MA, Hill RD. The prevalence, detection, and epidemiological correlates of peripheral vascular disease: a comparison of diabetic and non-diabetic subjects in an English community. Diabet Med. 1992;9(8):710–5.

    Article  PubMed  CAS  Google Scholar 

  30. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis. JAMA, J Am Med Assoc. 2002;287(19):2570–81.

    Article  CAS  Google Scholar 

  31. Thangarajah H, Yao D, Chang EI, Shi Y, Jazayeri L, Vial IN, et al. The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proceedings of the National Academy of Sciences.

  32. Hazarika S, Dokun AO, Li Y, Popel AS, Kontos CD, Annex BH. Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circ Res. 2007;101(9):948–56.

    Article  PubMed  CAS  Google Scholar 

  33. Kullo IJ, Bailey KR, Kardia SL, Mosley Jr TH, Boerwinkle E, Turner ST. Ethnic differences in peripheral arterial disease in the NHLBI Genetic Epidemiology Network of Arteriopathy (GENOA) study. Vasc Med. 2003;8(4):237–42.

    Article  PubMed  Google Scholar 

  34. Kullo IJ, Turner ST, Kardia SL, Mosley Jr TH, Boerwinkle E, de Andrade M. A genome-wide linkage scan for ankle-brachial index in African American and non-Hispanic white subjects participating in the GENOA study. Atherosclerosis. 2006;187(2):433–8.

    Article  PubMed  CAS  Google Scholar 

  35. Murabito JM, Guo CY, Fox CS, D’Agostino RB. Heritability of the ankle-brachial index: the Framingham Offspring study. Am J Epidemiol. 2006;164(10):963–8.

    Article  PubMed  Google Scholar 

  36. Wahlgren CM, Magnusson PKE. Genetic influences on peripheral arterial disease in a twin population. Arterioscler Thromb Vasc Biol. 31(3):678–682.

  37. Dokun AO, Annex B. Genetic polymorphisms in peripheral arterial disease role of genomic methodologies. In: Ginsburg HWaG, editor. Genomic and personalized medicine. vol 1–2: Elsavier; 2008.

  38. Knowles JW, Assimes TL, Li J, Quertermous T, Cooke JP. Genetic susceptibility to peripheral arterial disease: a dark corner in vascular biology. Arterioscler Thromb Vasc Biol. 2007;27(10):2068–78.

    Article  PubMed  CAS  Google Scholar 

  39. • Zintzaras E, Zdoukopoulos N. A Field synopsis and meta-analysis of genetic association studies in peripheral arterial disease: the CUMAGAS-PAD database. Am J Epidemiol. 2009;170(1):1–11. This is a recent review that provides a comprehensive overview of gene polymorphisms associated with PAD.

  40. Kawashima S, Yokoyama M. Dyfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol. 2004:01.ATV.0000125114.0000188079.0000125196.

  41. Hingorani AD. Polymorphisms in endothelial nitric oxide synthase and atherogenesis: John French Lecture 2000. Atherosclerosis. 2001;154(3):521–7.

    Article  PubMed  CAS  Google Scholar 

  42. Fatini C, Sofi F, Sticchi E, Bolli P, Sestini I, Falciani M, et al. eNOS G894T polymorphism as a mild predisposing factor for abdominal aortic aneurysm. J Vasc Surg. 2005;42(3):415–9.

    Article  PubMed  Google Scholar 

  43. Fatini C, Sofi F, Gensini F, Sticchi E, Lari B, Pratesi G, et al. Influence of eNOS Gene Polymorphisms on Carotid Atherosclerosis. Eur J Vasc Endovasc Surg. 2004;27(5):540–4.

    Article  PubMed  CAS  Google Scholar 

  44. Sticchi E, Sofi F, Romagnuolo I, Pratesi G, Pulli R, Pratesi C, et al. eNOS and ACE genes influence peripheral arterial disease predisposition in smokers. J Vasc Surg. 52(1):97–102 e101.

  45. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86(4):1343–6.

    Article  PubMed  CAS  Google Scholar 

  46. Basar Y, Salmayenli N, Aksoy M, Seckin S, Aydin M, Ozkok E. ACE gene polymorphism in peripheral vascular disease. Horm Metab Res. 2007;39(7):534–7.

    Article  PubMed  CAS  Google Scholar 

  47. Li R, Nicklas B, Pahor M, Newman A, Sutton-Tyrrell K, Harris T, et al. Polymorphisms of angiotensinogen and angiotensin-converting enzyme associated with lower extremity arterial disease in the Health, Aging and Body Composition study. J Hum Hypertens. 2007;21(8):673–82.

    Article  PubMed  CAS  Google Scholar 

  48. Fatini C, Sticchi E, Sofi F, Said AA, Pratesi G, Pulli R, et al. Multilocus analysis in candidate genes ACE, AGT, and AGTR1 and predisposition to peripheral arterial disease: role of ACE D/-240 T haplotype. J Vasc Surg. 2009;50(6):1399–404.

    Article  PubMed  Google Scholar 

  49. Cesari M, Penninx BW, Newman AB, Kritchevsky SB, Nicklas BJ, Sutton-Tyrrell K, et al. Inflammatory markers and onset of cardiovascular events: results from the Health ABC study. Circulation. 2003;108(19):2317–22.

    Article  PubMed  CAS  Google Scholar 

  50. Flex A, Gaetani E, Angelini F, Sabusco A, Chilla C, Straface G, et al. Pro-inflammatory genetic profiles in subjects with peripheral arterial occlusive disease and critical limb ischemia. J Intern Med. 2007;262(1):124–30.

    Article  PubMed  CAS  Google Scholar 

  51. Libra M, Signorelli SS, Bevelacqua Y, Navolanic PM, Bevelacqua V, Polesel J, et al. Analysis of G(−174)C IL-6 polymorphism and plasma concentrations of inflammatory markers in patients with type 2 diabetes and peripheral arterial disease. J Clin Pathol. 2006;59(2):211–5.

    Article  PubMed  CAS  Google Scholar 

  52. Gabriels JE, Paul DL. Connexin43 is highly localized to sites of disturbed flow in rat aortic endothelium but connexin37 and connexin40 are more uniformly distributed. Circ Res. 1998;83(6):636–43.

    PubMed  CAS  Google Scholar 

  53. • Katakami N, Sakamoto K, Kaneto H, Matsuhisa M, Shimizu I, Ishibashi F, et al. Association between the connexin37 polymorphism and peripheral arterial disease in subjects with type 2 diabetes. Diab Care. 2009;32(5):53–54. This is a short report, but it is one of only a few recent articles that identified a gene polymorphism associated with PAD among individuals with diabetes.

  54. Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316(5830):1491–3.

    Article  PubMed  CAS  Google Scholar 

  55. Cluett C, McDermott MM, Guralnik J, Ferrucci L, Bandinelli S, Miljkovic I, et al. The 9p21 myocardial infarction risk allele increases risk of peripheral artery disease in older people. Circ Cardiovasc Genet. 2009;2(4):347–53.

    Article  PubMed  Google Scholar 

  56. Helgadottir A, Thorleifsson G, Magnusson KP, Gretarsdottir S, Steinthorsdottir V, Manolescu A, et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet. 2008;40(2):217–24.

    Article  PubMed  CAS  Google Scholar 

  57. Yee KO, Ikari Y, Schwartz SM. An update of the Grutzbalg hypothesis: the role of thrombosis and coagulation in atherosclerotic progression. Thromb Haemost. 2001;85(2):207–17.

    PubMed  CAS  Google Scholar 

  58. Coughlin SR. Thrombin signalling and protease-activated receptors. Nature. 2000;407(6801):258–64.

    Article  PubMed  CAS  Google Scholar 

  59. Fowkes FG, Connor JM, Smith FB, Wood J, Donnan PT, Lowe GD. Fibrinogen genotype and risk of peripheral atherosclerosis. Lancet. 1992;339(8795):693–6.

    Article  PubMed  CAS  Google Scholar 

  60. Reny JL, Alhenc-Gelas M, Fontana P, Bissery A, Julia PL, Fiessinger JN, et al. The factor II G20210A gene polymorphism, but not factor V Arg506Gln, is associated with peripheral arterial disease: results of a case-control study. J Thromb Haemost. 2004;2(8):1334–40.

    Article  PubMed  CAS  Google Scholar 

  61. Conley PB, Delaney SM. Scientific and therapeutic insights into the role of the platelet P2Y12 receptor in thrombosis. Curr Opin Hematol. 2003;10(5):333–8.

    Article  PubMed  CAS  Google Scholar 

  62. Gachet C. ADP receptors of platelets and their inhibition. Thromb Haemost. 2001;86(1):222–32.

    PubMed  CAS  Google Scholar 

  63. Fontana P, Dupont A, Gandrille S, Bachelot-Loza C, Reny JL, Aiach M, et al. Adenosine diphosphate-induced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects. Circulation. 2003;108(8):989–95.

    Article  PubMed  CAS  Google Scholar 

  64. Fontana P, Gaussem P, Aiach M, Fiessinger JN, Emmerich J, Reny JL. P2Y12 H2 haplotype is associated with peripheral arterial disease: a case-control study. Circulation. 2003;108(24):2971–3.

    Article  PubMed  Google Scholar 

  65. Sofi F, Lari B, Rogolino A, Marcucci R, Pratesi G, Dorigo W, et al. Thrombophilic risk factors for symptomatic peripheral arterial disease. J Vasc Surg. 2005;41(2):255–60.

    Article  PubMed  Google Scholar 

  66. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10(1):111–3.

    Article  PubMed  CAS  Google Scholar 

  67. Refsum H, Ueland PM, Nygård O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med. 1998;49(1):31–62.

    Article  PubMed  CAS  Google Scholar 

  68. Todesco L, Angst C, Litynski P, Loehrer F, Fowler B, Haefeli WE. Methylenetetrahydrofolate reductase polymorphism, plasma homocysteine and age. Eur J Clin Invest. 1999;29(12):1003–9.

    Article  PubMed  CAS  Google Scholar 

  69. Sabino A, Fernandes AP, Lima LM, Ribeiro DD, Sousa MO, de Castro Santos ME, et al. Polymorphism in the methylenetetrahydrofolate reductase (C677T) gene and homocysteine levels: a comparison in Brazilian patients with coronary arterial disease, ischemic stroke and peripheral arterial obstructive disease. J Thromb Thrombolysis. 2009;27(1):82–7.

    Article  PubMed  CAS  Google Scholar 

  70. Pollex R, Mamakeesick M, Zinman B, Harris S, Hanley A, Hegele R. Methylenetetrahydrofolate reductase polymorphism 677 C>T is associated with peripheral arterial disease in type 2 diabetes. Cardiovasc Diabetol. 2005;4(1):17.

    Article  PubMed  Google Scholar 

  71. Gudmundsson G, Matthiasson SE, Arason H, Johannsson H, Runarsson F, Bjarnason H, et al. Localization of a gene for peripheral arterial occlusive disease to chromosome 1p31. Am J Hum Genet. 2002;70(3):586–92.

    Article  PubMed  CAS  Google Scholar 

  72. • Thorgeirsson TE, Geller F, Sulem P, et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 2008;452(7187):638–642. This GWAS found an association between nicotine dependence and a SNP (rs1051730) that was also associated with PAD and lung cancer, suggesting a gene–environment interaction.

  73. •• Jiang YD, Chang YC, Chiu YF, Chang TJ, Li HY, Lin WH, et al. SLC2A10 genetic polymorphism predicts development of peripheral arterial disease in patients with type 2 diabetes. SLC2A10 and PAD in type 2 diabetes. BMC Med Genet. 11:126. This recent study used a candidate gene approach to identify novel gene polymorphisms associated with the risk of developing PAD among individuals with diabetes.

  74. Coucke PJ, Willaert A, Wessels MW, Callewaert B, Zoppi N, De Backer J, et al. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat Genet. 2006;38(4):452–7.

    Article  PubMed  CAS  Google Scholar 

  75. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.

    Article  PubMed  CAS  Google Scholar 

  76. • Dokun AO, Keum S, Hazarika S, Li Y, Lamonte GM, Wheeler F, et al. A quantitative trait locus (LSq-1) on mouse chromosome 7 is linked to the absence of tissue loss after surgical hindlimb ischemia. Circulation. 2008;117(9):1207–1215. This study exemplifies a novel appraoch to identifying gene polymorphisms that may be important in the pathogenesis of PAD.

  77. Fukino K, Sata M, Seko Y, Hirata Y, Nagai R. Genetic background influences therapeutic effectiveness of VEGF. Biochem Biophys Res Commun. 2003;310(1):143–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This manuscript was supported by the Robert Wood Johnson Foundation, Harold Amos Medical Faculty Development Program Training Grant Award # 65874 to A.O. Dokun.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayotunde O. Dokun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katwal, A.B., Dokun, A.O. Peripheral Arterial Disease in Diabetes: Is There a Role for Genetics?. Curr Diab Rep 11, 218–225 (2011). https://doi.org/10.1007/s11892-011-0188-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-011-0188-9

Keywords

Navigation