Skip to main content

Prevention of Peripheral Arterial Disease

  • Chapter
  • First Online:
ASPC Manual of Preventive Cardiology

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 736 Accesses

Abstract

Peripheral arterial disease (PAD), defined as atherosclerosis of the lower extremities, affects 200 million individuals worldwide and independently increases risk of cardiovascular morbidity and mortality. Major risk factors include smoking, diabetes, hypertension, hyperlipidemia, and family history. Diagnosing PAD can be difficult as many patients are asymptomatic or have atypical symptoms. In addition to lifestyle modifications as the cornerstone of PAD prevention, many newer pharmaceutical agents are now approved to produce further reductions in cardiovascular and limb events. In this chapter we detail the most up-to-date literature on traditional and novel risk factors for PAD and strategies for diagnosis and review the latest recommendations for primary and secondary prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fowkes FGR, Rudan D, Rudan I, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382(9901):1329–40.

    Article  PubMed  Google Scholar 

  2. Selvin E, Erlinger TP. Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999–2000. Circulation. 2004;110(6):738–43.

    Article  PubMed  Google Scholar 

  3. Allison MA, Ho E, Denenberg JO, et al. Ethnic-specific prevalence of peripheral arterial disease in the United States. Am J Prev Med. 2007;32(4):328–33.

    Article  PubMed  Google Scholar 

  4. McGrae McDermott M, Greenland P, Liu K, et al. Leg symptoms in peripheral arterial disease associated clinical characteristics and functional impairment. JAMA. 2001;286(13):1599–606.

    Article  Google Scholar 

  5. Hirsch AT, Criqui MH, Treat-Jacobson D, et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 2001;286(11):1317–24.

    Article  CAS  PubMed  Google Scholar 

  6. McDermott MM, Liu K, Greenland P, et al. Functional decline in peripheral arterial disease associations with the ankle brachial index and leg symptoms. JAMA. 2004;292(4):453–61.

    Article  CAS  PubMed  Google Scholar 

  7. Ankle Brachial Index Collaboration, Fowkes FGR, Murray GD, et al. Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis. JAMA. 2008;300(2):197–208.

    Article  PubMed Central  Google Scholar 

  8. Diehm C, Allenberg Jens R, Pittrow D, et al. Mortality and vascular morbidity in older adults with asymptomatic versus symptomatic peripheral artery disease. Circulation. 2009;120(21):2053–61.

    Article  PubMed  Google Scholar 

  9. U. S. Preventive Services Task Force. Screening for peripheral artery disease and cardiovascular disease risk assessment with the ankle-brachial index: US preventive services task force recommendation statement. JAMA. 2018;320(2):177–83.

    Article  Google Scholar 

  10. Gerhard M, Gornik H, Barrett C, et al. 2016 AHA/ACC Guideline on the management of patients with lower extremity peripheral artery disease: executive summary. Vasc Med. 2017;22:NP1–NP43.

    Article  Google Scholar 

  11. Criqui MH, Aboyans V. Epidemiology of peripheral artery disease. Circ Res. 2015;116(9):1509–26.

    Article  CAS  PubMed  Google Scholar 

  12. McDermott MM, Liu K, Criqui MH, et al. Ankle-Brachial Index and subclinical cardiac and carotid disease: the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2005;162(1):33–41.

    Article  PubMed  Google Scholar 

  13. Zheng Z-J, Sharrett AR, Chambless LE, et al. Associations of ankle-brachial index with clinical coronary heart disease, stroke and preclinical carotid and popliteal atherosclerosis:: the Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis. 1997;131(1):115–25.

    Article  CAS  PubMed  Google Scholar 

  14. Kannel WB, Mcgee DL. Update on some epidemiologic features of intermittent claudication: the Framingham Study. J Am Geriatr Soc. 1985;33(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  15. Murabito J, Evans J, Nieto K, et al. Prevalence and clinical correlates of peripheral arterial disease in the Framingham Offspring Study. Am Heart J. 2002;143:961–5.

    Article  PubMed  Google Scholar 

  16. Allison MA, Budoff MJ, Wong ND, et al. Prevalence of and risk factors for subclinical cardiovascular disease in selected US Hispanic ethnic groups: the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2008;167(8):962–9.

    Article  PubMed  Google Scholar 

  17. Allison MA, Gonzalez F 2nd, Raij L, et al. Cuban Americans have the highest rates of peripheral arterial disease in diverse Hispanic/Latino communities. J Vasc Surg. 2015;62(3):665–72.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Price JF, Mowbray PI, Lee AJ, et al. Relationship between smoking and cardiovascular risk factors in the development of peripheral arterial disease and coronary artery disease; Edinburgh Artery Study: Edinburgh Artery Study. Eur Heart J. 1999;20(5):344–53.

    Article  CAS  PubMed  Google Scholar 

  19. Ding N, Sang Y, Chen J, et al. Cigarette smoking, smoking cessation, and long-term risk of 3 major atherosclerotic diseases. J Am Coll Cardiol. 2019;74(4):498–507.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lu J, Creager M. The relationship of cigarette smoking to peripheral arterial disease. Rev Cardiovasc Med. 2004;5:189–93.

    PubMed  Google Scholar 

  21. Willigendael EM, Teijink JAW, Bartelink M-L, et al. Influence of smoking on incidence and prevalence of peripheral arterial disease. J Vasc Surg. 2004;40(6):1158–65.

    Article  PubMed  Google Scholar 

  22. Ignarro LJ, Balestrieri ML, Napoli C. Nutrition, physical activity, and cardiovascular disease: an update. Cardiovasc Res. 2007;73(2):326–40.

    Article  CAS  PubMed  Google Scholar 

  23. Housley E, Leng G, Donnan P, Fowkes FGR. Physical activity and risk of peripheral arterial disease in the general population: Edinburgh Artery Study. J Epidemiol Community Health. 1993;47:475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu Y, Ballew S, Kwak L, et al. Physical activity and subsequent risk of hospitalization with peripheral artery disease and critical limb ischemia in the ARIC study. J Am Heart Assoc. 2019;8:e013534.

    PubMed  PubMed Central  Google Scholar 

  25. Hooi JD, Kester ADM, Stoffers HEJH, et al. Incidence of and risk factors for asymptomatic peripheral arterial occlusive disease: a longitudinal study. Am J Epidemiol. 2001;153(7):666–72.

    Article  CAS  PubMed  Google Scholar 

  26. Makin A, Lip GYH, Silverman S, Beevers DG. Peripheral vascular disease and hypertension: a forgotten association? J Hum Hypertens. 2001;15(7):447–54.

    Article  CAS  PubMed  Google Scholar 

  27. Safar ME, Priollet P, Luizy F, et al. Peripheral arterial disease and isolated systolic hypertension: the ATTEST study. J Hum Hypertens. 2009;23(3):182–7.

    Article  CAS  PubMed  Google Scholar 

  28. Meijer Wouter T, Hoes Arno W, Rutgers D, et al. Peripheral arterial disease in the elderly. Arterioscler Thromb Vasc Biol. 1998;18(2):185–92.

    Article  Google Scholar 

  29. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25.

    Article  CAS  PubMed  Google Scholar 

  30. Tabas I, Williams Kevin J, Borén J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis. Circulation. 2007;116(16):1832–44.

    Article  CAS  PubMed  Google Scholar 

  31. Aday Aaron W, Lawler Patrick R, Cook Nancy R, et al. Lipoprotein particle profiles, standard lipids, and peripheral artery disease incidence. Circulation. 2018;138(21):2330–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–e209.

    Article  PubMed  Google Scholar 

  33. Thiruvoipati T, Kielhorn CE, Armstrong EJ. Peripheral artery disease in patients with diabetes: epidemiology, mechanisms, and outcomes. World J Diabetes. 2015;6(7):961–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Beks PJ, Mackaay AJC, de Neeling JND, et al. Peripheral arterial disease in relation to glycaemic level in an elderly Caucasian population: the Hoorn Study. Diabetologia. 1995;38(1):86–96.

    Article  CAS  PubMed  Google Scholar 

  35. Jeffcoate WJ, Rasmussen LM, Hofbauer LC, Game FL. Medial arterial calcification in diabetes and its relationship to neuropathy. Diabetologia. 2009;52(12):2478–88.

    Article  CAS  PubMed  Google Scholar 

  36. Chistiakov D, Sobenin I, Orekhov A, Bobryshev Y. Mechanisms of medial arterial calcification in diabetes. Curr Pharm Des. 2014;20(37):5870–83.

    Article  CAS  PubMed  Google Scholar 

  37. Garimella P, Hirsch A. Peripheral artery disease and chronic kidney disease: clinical synergy to improve outcomes. Adv Chronic Kidney Dis. 2014;21:460.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wattanakit K, Folsom AR, Selvin E, et al. Kidney function and risk of peripheral arterial disease: results from the atherosclerosis risk in communities (ARIC) study. J Am Soc Nephrol. 2007;18(2):629.

    Article  PubMed  Google Scholar 

  39. Matsushita K, Ballew S, Coresh J, et al. Measures of chronic kidney disease and risk of incident peripheral artery disease: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol. 2017;5:718–28.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wassel CL, Loomba R, Ix JH, et al. Family history of peripheral artery disease is associated with prevalence and severity of peripheral artery disease: the San Diego population study. J Am Coll Cardiol. 2011;58(13):1386–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wahlgren C, Magnusson P. Genetic influences on peripheral arterial disease in a twin population. Arterioscler Thromb Vasc Biol. 2011;31:678–82.

    Article  CAS  PubMed  Google Scholar 

  42. Helgadottir A, Thorleifsson G, Magnusson KP, et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet. 2008;40(2):217–24.

    Article  CAS  PubMed  Google Scholar 

  43. Cluett C, McDermott M, Guralnik J, et al. The 9p21 myocardial infarction risk allele increases risk of peripheral artery disease in older people. Circ Cardiovasc Genet. 2009;2:347–53.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Downing K, Nead K, Kojima Y, et al. The combination of 9p21.3 genotype and biomarker profile improves a peripheral artery disease risk prediction model. Vasc Med (London, England). 2014;19:3–8.

    Article  CAS  Google Scholar 

  45. Klarin D, Lynch J, Aragam K, et al. Genome-wide association study of peripheral artery disease in the Million Veteran Program. Nat Med. 2019;25(8):1274–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Norman P, Eikelboom J, Hankey G. Peripheral arterial disease: prognostic significance and prevention of atherothrombotic complications. Med J Aust. 2004;181:150–4.

    Article  PubMed  Google Scholar 

  47. McGrae McDermott M, Kerwin DR, Liu K, et al. Prevalence and significance of unrecognized lower extremity peripheral arterial disease in general medicine practice*. J Gen Intern Med. 2001;16(6):384–90.

    Article  PubMed Central  Google Scholar 

  48. Sen S, Lynch DR, Kaltsas E, et al. Association of asymptomatic peripheral arterial disease with vascular events in patients with stroke or transient ischemic attack. Stroke. 2009;40(11):3472–7.

    Article  PubMed  Google Scholar 

  49. Merchant A, Hu F, Spiegelman D, et al. Dietary fiber reduces peripheral arterial disease risk in men. J Nutr. 2003;133:3658–63.

    Article  CAS  PubMed  Google Scholar 

  50. Törnwall M, Virtamo J, Haukka J, et al. Prospective study of diet, lifestyle, and intermittent claudication in male smokers. Am J Epidemiol. 2000;151:892–901.

    Article  PubMed  Google Scholar 

  51. Klipstein-Grobusch K, Breeijen JH, Grobbee D, et al. Dietary antioxidants and peripheral arterial disease: the Rotterdam study. Am J Epidemiol. 2001;154:145–9.

    Article  CAS  PubMed  Google Scholar 

  52. Lane J, Magno C, Lane K, et al. Nutrition impacts the prevalence of peripheral arterial disease in the United States. J Vasc Surg. 2008;48:897–904.

    Article  PubMed  Google Scholar 

  53. Ruiz-Canela M, Estruch R, Corella D, Salas-Salvadó J, Martínez-González MA. Association of mediterranean diet with peripheral artery disease: the PREDIMED randomized trial. JAMA. 2014;311(4):415–7.

    Article  CAS  PubMed  Google Scholar 

  54. Ciccarone E, Di Castelnuovo A, Salcuni M, et al. A high-score Mediterranean dietary pattern is associated with a reduced risk of peripheral arterial disease in Italian patients with Type 2 diabetes. J Thromb Haemost. 2003;1(8):1744–52.

    Article  CAS  PubMed  Google Scholar 

  55. Arnett Donna K, Blumenthal Roger S, Albert Michelle A, et al. 2019 ACC/AHA Guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation. 2019;140(11):e596–646.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Leung FP, Yung LM, Laher I, et al. Exercise, vascular wall and cardiovascular diseases. Sports Med. 2008;38(12):1009–24.

    Article  PubMed  Google Scholar 

  57. Schiattarella GG, Perrino C, Magliulo F, et al. Physical activity in the prevention of peripheral artery disease in the elderly. Front Physiol. 2014;5:12.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Stoekenbroek R, Boekholdt S, Fayyad R, et al. High-dose atorvastatin is superior to moderate-dose simvastatin in preventing peripheral arterial disease. Heart. 2015;101:356–62.

    Article  CAS  PubMed  Google Scholar 

  59. Itoga N, Tawfik D, Lee C, et al. Association of blood pressure measurements with peripheral arterial disease events: a reanalysis of the ALLHAT data. Circulation. 2018;138:CIRCULATIONAHA.118.033348.

    Google Scholar 

  60. Murabito Joanne M, D’Agostino Ralph B, Silbershatz H, Wilson Peter WF. Intermittent claudication. Circulation. 1997;96(1):44–9.

    Article  Google Scholar 

  61. Criqui M. Peripheral arterial disease- epidemiological aspects. Vasc Med (London, England). 2001;6:3–7.

    Article  CAS  Google Scholar 

  62. American Diabetes Association. 3. Prevention or delay of type 2 diabetes: standards of medical care in diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S29–33.

    Article  Google Scholar 

  63. American Diabetes Association. 12. Older adults: standards of medical care in diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S139–S47.

    Article  Google Scholar 

  64. ACC/AHA 2005 Practice guidelines for the management of patients with peripheral arterial disease (Lower extremity, renal, mesenteric, and abdominal aortic): executive summary. Circulation. 2006;113(11):1474–547.

    Google Scholar 

  65. Teraa M, Conte M, Moll F, Verhaar M. Critical limb ischemia: current trends and future directions. J Am Heart Assoc. 2016;5:e002938.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hyun S, Forbang NI, Allison MA, et al. Ankle-brachial index, toe-brachial index, and cardiovascular mortality in persons with and without diabetes mellitus. J Vasc Surg. 2014;60(2):390–5.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hussain M, Al-Omran M, Mamdani M. Efficacy of a guideline-recommended risk-reduction program to improve cardiovascular and limb outcomes in patients with peripheral arterial disease. J Vasc Surg. 2016;64:535.

    Article  Google Scholar 

  68. Arya S, Khakharia A, Binney Z, et al. Statins have a dose-dependent effect on amputation and survival in peripheral artery disease patients. Circulation. 2018;137:CIRCULATIONAHA.117.032361.

    Google Scholar 

  69. Patel Krishna K, Jones Philip G, Ellerbeck Edward F, et al. Underutilization of evidence-based smoking cessation support strategies despite high smoking addiction burden in peripheral artery disease specialty care: insights from the International PORTRAIT Registry. J Am Heart Assoc. 2018;7(20):e010076.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cahan M, Montgomery P, Otis R, et al. The effect of cigarette smoking status on six-minute walk distance in patients with intermittent claudication. Angiology. 1999;50:537–46.

    Article  CAS  PubMed  Google Scholar 

  71. Armstrong E, Wu J, Singh G, et al. Smoking cessation is associated with decreased mortality and improved amputation-free survival among patients with symptomatic peripheral artery disease. J Vasc Surg. 2014;60(6):1565–71.

    Google Scholar 

  72. Willigendael E, Teijink J, Bartelink M-L, et al. Smoking and the patency of lower extremity bypass grafts: a meta-analysis. J Vasc Surg Off Publ Soc Vasc Surg Int Soc Cardiovasc Surg North Am Chapter. 2005;42:67–74.

    Google Scholar 

  73. Parmenter B, Dieberg G, Smart N. Exercise training for management of peripheral arterial disease: a systematic review and meta-analysis. Sports Med (Auckland, NZ). 2014;45:231–44.

    Article  Google Scholar 

  74. McDermott MM, Liu K, Ferrucci L, et al. Physical performance in peripheral arterial disease: a slower rate of decline in patients who walk more. Ann Intern Med. 2006;144(1):10–20.

    Article  PubMed  Google Scholar 

  75. Stewart A, Lamont PM. Exercise training for claudication. Surgeon. 2007;5:291–9.

    Article  CAS  PubMed  Google Scholar 

  76. McDermott M, Ades P, Guralnik J, et al. Treadmill exercise and resistance training in patients with peripheral arterial disease with and without intermittent claudication: a randomized controlled trial. JAMA. 2009;301:165–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Leeper N, Myers J, Zhou M, et al. Exercise capacity is the strongest predictor of mortality in patients with peripheral arterial disease. J Vasc Surg. 2012;57:728–33.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Treat-Jacobson D, McDermott M, Beckman J, et al. Implementation of supervised exercise therapy for patients with symptomatic peripheral artery disease: a science advisory from the American Heart Association. Circulation. 2019;140:e700–10.

    Article  PubMed  Google Scholar 

  79. Harwood A, Smith G, Chetter I, Cayton T, Broadbent E. A systematic review of the uptake and adherence rates to supervised exercise programs in patients with intermittent claudication. Ann Vasc Surg. 2016;34:280–9.

    Article  PubMed  Google Scholar 

  80. Gardner A, Parker D, Montgomery P, Blevins S. Step-monitored home exercise improves ambulation, vascular function, and inflammation in symptomatic patients with peripheral artery disease: a randomized controlled trial. J Am Heart Assoc. 2014;3:e001107.

    Article  PubMed  PubMed Central  Google Scholar 

  81. McDermott M, Liu K, Guralnik J, et al. Home-based walking exercise intervention in peripheral artery disease a randomized clinical trial. JAMA. 2013;310:57–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gardner A, Parker D, Montgomery P, Scott K, Blevins S. Efficacy of quantified home-based exercise and supervised exercise in patients with intermittent claudication a randomized controlled trial. Circulation. 2011;123:491–8.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Collins T, Lunos S, Carlson T, et al. Effects of a home-based walking intervention on mobility and quality of life in people with diabetes and peripheral arterial disease. Diabetes Care. 2011;34:2174–9.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Safian RD. Appropriate use of vorapaxar in patients with peripheral artery disease. J Am Coll Cardiol Intv. 2016;9(20):2165.

    Article  Google Scholar 

  85. Bonaca MP, Gutierrez JA, Creager MA, et al. Acute limb ischemia and outcomes with vorapaxar in patients with peripheral artery disease. Circulation. 2016;133(10):997–1005.

    Article  CAS  PubMed  Google Scholar 

  86. Bonaca MP, Creager MA, Olin J, et al. Peripheral revascularization in patients with peripheral artery disease with vorapaxar: insights from the TRA 2°P–TIMI 50 trial. J Am Coll Cardiol Intv. 2016;9(20):2157–64.

    Article  Google Scholar 

  87. Kumbhani D, Steg P, Cannon C, et al. Statin therapy and long-term adverse limb outcomes in patients with peripheral artery disease: insights from the REACH registry. Eur Heart J. 2014;35:2864–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mohler E, Hiatt W, Creager M. Cholesterol reduction with atorvastatin improves walking distance in patients with peripheral arterial disease. Circulation. 2003;108:1481–6.

    Article  CAS  PubMed  Google Scholar 

  89. Aung PP, Maxwell H, Jepson R, Price J, Leng G. Lipid-lowering for peripheral arterial disease of the lower limb. Cochrane Database Syst Rev (Online). 2007;4:CD000123.

    Google Scholar 

  90. Michos ED, McEvoy JW, Blumenthal RS. Lipid management for the prevention of atherosclerotic cardiovascular disease. N Engl J Med. 2019;381(16):1557–67.

    Article  CAS  PubMed  Google Scholar 

  91. West A, Anderson J, Meyer C, et al. The effect of ezetimibe on peripheral arterial atherosclerosis depends upon statin use at baseline. Atherosclerosis. 2011;218:156–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Taylor A, Villines T, Stanek E, et al. Extended-release niacin or ezetimibe and carotid intima-media thickness. N Engl J Med. 2009;361:2113–22.

    Article  CAS  PubMed  Google Scholar 

  93. Bonaca Marc P, Nault P, Giugliano Robert P, et al. Low-density lipoprotein cholesterol lowering with evolocumab and outcomes in patients with peripheral artery disease. Circulation. 2018;137(4):338–50.

    Article  CAS  PubMed  Google Scholar 

  94. Anand SS, Bosch J, Eikelboom JW, et al. Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet. 2018;391(10117):219–29.

    Article  CAS  PubMed  Google Scholar 

  95. Vrsalovic M, Vucur K, Presečki A, Fabijanić D, Milosevic M. Impact of diabetes on mortality in peripheral artery disease: a meta-analysis: diabetes and mortality in peripheral artery disease: a meta-analysis. Clin Cardiol. 2016;40:287–91.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Jude E, Oyibo S, Chalmers N, Boulton A. Peripheral arterial disease in diabetic and nondiabetic patients a comparison of severity and outcome. Diabetes Care. 2001;24:1433–7.

    Article  CAS  PubMed  Google Scholar 

  97. Selvin E, Marinopoulos S, Berkenblit G, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141:421–31.

    Article  CAS  PubMed  Google Scholar 

  98. Shammas A, Jeon-Slaughter H, Tsai S, et al. Major limb outcomes following lower extremity endovascular revascularization in patients with and without diabetes mellitus. J Endovasc Ther. 2017;24:152660281770513.

    Article  Google Scholar 

  99. Prompers L, Huijberts M, Apelqvist J, et al. High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in Europe. Baseline results from the Eurodiale study. Diabetologia. 2007;50(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  100. Zinman B, Wanner C, Lachin J, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.

    Article  CAS  PubMed  Google Scholar 

  101. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.

    Article  CAS  PubMed  Google Scholar 

  102. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44.

    Article  CAS  PubMed  Google Scholar 

  103. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bonaca Marc P, Beckman JA. Sodium glucose cotransporter 2 inhibitors and amputation risk. Circulation. 2018;137(14):1460–2.

    Article  CAS  PubMed  Google Scholar 

  105. Forster R, Stewart M, Cleanthis M, et al. Cilostazol for intermittent claudication. Cochrane Database Syst Rev. 2014;10:CD003748.

    Google Scholar 

  106. Salhiyyah K, Forster R, Senanayake E, et al. Pentoxifylline for intermittent claudication. Cochrane Database Syst Rev. 2015;2015.

    Google Scholar 

  107. Golledge J, Moxon J, Rowbotham S, et al. Risk of major amputation in patients with intermittent claudication undergoing early revascularization: early revascularization and major amputation in intermittent claudication. Br J Surg. 2018;105:699–708.

    Article  CAS  PubMed  Google Scholar 

  108. Olin JW, White CJ, Armstrong EJ, Kadian-Dodov D, Hiatt WR. Peripheral artery disease: evolving role of exercise, medical therapy, and endovascular options. J Am Coll Cardiol. 2016;67(11):1338–57.

    Article  PubMed  Google Scholar 

  109. Wiseman JT, Fernandes-Taylor S, Saha S, et al. Endovascular versus open revascularization for peripheral arterial disease. Ann Surg. 2017;265(2):424–30.

    Article  PubMed  Google Scholar 

  110. Lin Jonathan H, Brunson A, Romano Patrick S, Mell Matthew W, Humphries MD. Endovascular-first treatment is associated with improved amputation-free survival in patients with critical limb ischemia. Circ Cardiovasc Qual Outcomes. 2019;12(8):e005273.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Weitz Jeffrey I, Byrne J, Clagett GP, et al. Diagnosis and treatment of chronic arterial insufficiency of the lower extremities: a critical review. Circulation. 1996;94(11):3026–49.

    Article  Google Scholar 

  112. Dosluoglu HH, Lall P, Harris LM, Dryjski ML. Long-term limb salvage and survival after endovascular and open revascularization for critical limb ischemia after adoption of endovascular-first approach by vascular surgeons. J Vasc Surg. 2012;56(2):361–71.e3.

    Article  PubMed  Google Scholar 

  113. Slovut David P, Lipsitz EC. Surgical technique and peripheral artery disease. Circulation. 2012;126(9):1127–38.

    Article  PubMed  Google Scholar 

  114. Bedenis R, Lethaby A, Maxwell H, Acosta S, Prins MH. Antiplatelet agents for preventing thrombosis after peripheral arterial bypass surgery. Cochrane Database Syst Rev. 2015;2015(2):CD000535.

    PubMed Central  Google Scholar 

  115. Hess Connie N, Norgren L, Ansel Gary M, et al. A structured review of antithrombotic therapy in peripheral artery disease with a focus on revascularization. Circulation. 2017;135(25):2534–55.

    Article  CAS  PubMed  Google Scholar 

  116. Cho S, Lee Y-J, Ko Y-G, et al. Optimal strategy for antiplatelet therapy after endovascular revascularization for lower extremity peripheral artery disease. J Am Coll Cardiol Intv. 2019;12(23):2359.

    Article  Google Scholar 

  117. Tangelder MJD, Algra A, Lawson JA, et al. Efficacy of oral anticoagulants compared with aspirin after infrainguinal bypass surgery (The Dutch Bypass Oral anticoagulants or Aspirin study): a randomised trial. Lancet. 2000;355:346–51.

    Article  CAS  Google Scholar 

  118. Capell W, Bonaca M, Nehler M, et al. Rationale and design for the vascular outcomes study of ASA along with rivaroxaban in endovascular or surgical limb revascularization for peripheral artery disease (VOYAGER PAD). Am Heart J. 2018;199:83–91.

    Article  PubMed  Google Scholar 

  119. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Plasma concentration of C-reactive protein and risk of developing peripheral vascular disease. Circulation. 1998;97:425–8.

    Article  CAS  PubMed  Google Scholar 

  120. Pradhan A, Shrivastava S, Cook N. Symptomatic peripheral arterial disease in women: nontraditional biomarkers of elevated risk. J Vasc Surg. 2008;48:1354.

    Article  Google Scholar 

  121. Pradhan A, Rifai N, Ridker P. Soluble intercellular adhesion molecule-1, soluble vascular adhesion molecule-1, and the development of symptomatic peripheral arterial disease in men. Circulation. 2002;106:820–5.

    Article  CAS  PubMed  Google Scholar 

  122. Saijo Y, Utsugi M, Yoshioka E, et al. Relationship of beta-2 microglobulin to arterial stiffness in Japanese subjects. Hypertens Res. 2005;28:505–11.

    Article  CAS  PubMed  Google Scholar 

  123. Wilson A, Kimura E, Harada R, et al. β2-Microglobulin as a biomarker in peripheral arterial disease proteomic profiling and clinical studies. Circulation. 2007;116:1396–403.

    Article  CAS  PubMed  Google Scholar 

  124. Allison MA, Criqui MH, McClelland RL, et al. The effect of novel cardiovascular risk factors on the ethnic-specific odds for peripheral arterial disease in the multi-ethnic study of atherosclerosis (MESA). J Am Coll Cardiol. 2006;48(6):1190–7.

    Article  PubMed  Google Scholar 

  125. Tzoulaki I, Murray Gordon D, Lee Amanda J, et al. C-Reactive protein, interleukin-6, and soluble adhesion molecules as predictors of progressive peripheral atherosclerosis in the general population. Circulation. 2005;112(7):976–83.

    Article  CAS  PubMed  Google Scholar 

  126. Smith FB, Lee A, Hau CM, et al. Plasma fibrinogen, haemostatic factors and prediction of peripheral arterial disease in the Edinburgh Artery Study. Blood Coagul Fibrinolysis. 2000;11:43–50.

    Article  CAS  PubMed  Google Scholar 

  127. Gurdasani D, Sjouke B, Tsimikas S, et al. Lipoprotein(a) and risk of coronary, cerebrovascular, and peripheral artery disease the EPIC-Norfolk prospective population study. Arterioscler Thromb Vasc Biol. 2012;32:3058–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Laschkolnig A, Kollerits B, Lamina C, et al. Lipoprotein (a) concentrations, apolipoprotein (a) phenotypes, and peripheral arterial disease in three independent cohorts. Cardiovasc Res. 2014;103(1):28–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Khawaja FJ, Bailey KR, Turner ST, et al. Association of novel risk factors with the ankle brachial index in African American and non-hispanic white populations. Mayo Clin Proc. 2007;82(6):709–16.

    Article  PubMed  Google Scholar 

  130. O’Hare AM, Newman AB, Katz R, et al. Cystatin C and incident peripheral arterial disease events in the elderly: results from the cardiovascular health study. Arch Intern Med. 2005;165(22):2666–70.

    Article  PubMed  Google Scholar 

  131. Joosten M, Pai J, Bertoia M, et al. B2-Microglobulin, Cystatin C, and creatinine and risk of symptomatic peripheral artery disease. J Am Heart Assoc. 2014;3:e000803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Lim LS, Haq N, Mahmood S, Hoeksema L. Atherosclerotic cardiovascular disease screening in adults: American College of Preventive Medicine position statement on preventive practice. Am J Prev Med. 2011;40(3):381.e1–e10.

    Google Scholar 

  133. American Diabetes Association. Peripheral arterial disease in people with diabetes. Diabetes Care. 2003;26(12):3333.

    Article  Google Scholar 

  134. Aboyans V, Ricco J-B, Bartelink M-LEL, et al. 2017 ESC Guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries Endorsed by: the European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J. 2017;39(9):763–816.

    Article  Google Scholar 

  135. Conte MS, Pomposelli FB, Clair DG, et al. Society for Vascular Surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: management of asymptomatic disease and claudication. J Vasc Surg. 2015;61(3):2S–41S.e1.

    Article  PubMed  Google Scholar 

  136. U. S. Preventive Services Task Force. Screening for peripheral arterial disease: recommendation statement. Am Fam Physician. 2006;73(3):497–500.

    Google Scholar 

  137. Moyer VA, On Behalf of the USPSTF. Screening for peripheral artery disease and cardiovascular disease risk assessment with the ankle–brachial index in adults: U.S. preventive services task force recommendation statement. Ann Intern Med. 2013;159(5):342–8.

    Article  PubMed  Google Scholar 

  138. Hageman D, Fokkenrood H, Gommans L, Van den Houten M, Teijink J. Supervised exercise therapy versus home-based exercise therapy versus walking advice for intermittent claudication. Cochrane Database Syst Rev. 2018;4:CD005263.

    PubMed  Google Scholar 

  139. Singer DRJ, Kite A. Management of hypertension in peripheral arterial disease: does the choice of drugs matter? Eur J Vasc Endovasc Surg. 2008;35(6):701–8.

    Article  CAS  PubMed  Google Scholar 

  140. Lane D, Lip G. Treatment of hypertension in peripheral arterial disease. Cochrane Database Syst Rev (Online). 2009;12:CD003075.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsie Gyang Ross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ross, E.G., Unkart, J.T., Allison, M. (2021). Prevention of Peripheral Arterial Disease. In: Wong, N.D., Amsterdam, E.A., Toth, P.P. (eds) ASPC Manual of Preventive Cardiology. Contemporary Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-56279-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56279-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56278-6

  • Online ISBN: 978-3-030-56279-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics