Skip to main content
Log in

Genetics of type 2 diabetes

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

After several years of uncertain progress, the stage is now set for a transformation in understanding the genetic landscape of type 2 diabetes. Advances in genome informatics, genotyping technology, and statistical methodology, allied to availability of large-scale clinical material, are having a salutary effect on susceptibility gene discovery. The advent of genuinely genome-wide association scans and the prospects for combining genetics with high-throughput genomics are additional sources of optimism for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Zimmet P, Alberti KGMM, Shaw J: Global and societal implications of the diabetes epidemic. Nature 2001, 414:782–787.

    Article  PubMed  CAS  Google Scholar 

  2. Bell JI: The double helix in clinical practice. Nature 2003, 421:414–416.

    Article  PubMed  CAS  Google Scholar 

  3. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K: A comprehensive review of genetic association studies. Genet Med 2002, 4:45–61.

    Article  PubMed  CAS  Google Scholar 

  4. Gloyn AL, McCarthy MI: The genetics of type 2 diabetes. Baillieres Best Pract Res Clin Endocrinol Metab 2001, 15:293–308.

    Article  CAS  Google Scholar 

  5. Stride A, Hattersley AT: Different genes, different diabetes: lessons from maturity-onset diabetes of the young. Ann Med 2002, 34:207–216.

    PubMed  CAS  Google Scholar 

  6. Pearson ER, Starkey BJ, Powell RJ, et al.: Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 2004, 362:1275–1281.

    Article  CAS  Google Scholar 

  7. Edghill EL, Bingham C, Ellard S, Hattersley AT: Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. J Med Genet 2006, 43:84–90.

    Article  PubMed  CAS  Google Scholar 

  8. Bellanne-Chantelot C, Clauin S, Chauveau D, et al.: Large genomic rearrangements in the hepatocyte nuclear factor-1beta (TCF2) gene are the most frequent cause of maturity-onset diabetes of the young type 5. Diabetes 2005, 54:3126–3132.

    Article  PubMed  CAS  Google Scholar 

  9. Gloyn AL, Pearson ER, Antcliff JF, et al.: Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 2004, 350:1838–1849. A tour-de-force of clinical research and molecular genetics. Describes the identification and characterization of KCNJ11 mutations involved in neonatal diabetes.

    Article  PubMed  CAS  Google Scholar 

  10. Gloyn AL, Reimann F, Girard C, et al.: Relapsing diabetes can result from moderately activating mutations in KCNJ11. Hum Mol Genet 2005, 14:925–934.

    Article  PubMed  CAS  Google Scholar 

  11. Gloyn AL, Weedon MN, Owen KR, et al.: Large-scale association studies of variants in genes encoding the pancreatic beta-cell K-ATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with increased risk of type 2 diabetes. Diabetes 2003, 52:568–572.

    Article  PubMed  CAS  Google Scholar 

  12. Hattersley AT, Ashcroft FM: Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes 2005, 54:2503–2513.

    Article  PubMed  CAS  Google Scholar 

  13. McCarthy MI: Progress in defining the molecular basis of type 2 diabetes through susceptibility gene identification. Hum Mol Genet 2004, 13(suppl 1):R33-R41.

    Article  PubMed  CAS  Google Scholar 

  14. Hattersley AT, McCarthy MI: A question of standards: what makes a good genetic association study? Lancet 2005, 366:1315–1323. One of seven articles in a recent Lancet series covering diverse aspects of genetic epidemiology. The series is a useful resource for those wishing to follow up on the theoretic and methodologic issues described in this article.

    Article  PubMed  Google Scholar 

  15. Wacholder S, Chanock S, Garcia-Closas M, et al.: Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 2004, 96:434–442. Essential reading for anyone in the genetic association business. The most cogent outline of why so much of the existing literature on complex trait association is suspect.

    Article  PubMed  Google Scholar 

  16. Altshuler D, Hirschhorn JN, Klannemark M, et al.: The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000, 26:76–80.

    Article  PubMed  CAS  Google Scholar 

  17. Masud S, Ye S; SAS Group: Effect of the peroxisome proliferator activated receptor-gamma gene Pro12Ala variant on body mass index: a meta-analysis. J Med Genet 2003, 40:773–780.

    Article  PubMed  CAS  Google Scholar 

  18. Doney AS, Fischer B, Cecil JE, et al.: Association of the Pro12Ala and C1431T variants of PPARG and their haplotypes with susceptibility to type 2 diabetes. Diabetologia 2004, 47:555–558.

    Article  PubMed  CAS  Google Scholar 

  19. Snitker S, Watanabe RM, Ani I, et al.: Changes in insulin sensitivity in response to troglitazone do not differ between subjects with and without the common, functional Pro12Ala peroxisome proliferator-activated receptor-gamma2 gene variant: results from the Troglitazone in Prevention of Diabetes (TRIPOD) study. Diabetes Care 2004, 27:1365–1368.

    Article  PubMed  CAS  Google Scholar 

  20. Jellema A, Zeegers MP, Feskens EJ, et al.: Gly972Arg variant in the insulin receptor substrate-1 gene and association with type 2 diabetes: a meta-analysis of 27 studies. Diabetologia 2003, 46:990–995.

    Article  PubMed  CAS  Google Scholar 

  21. Zeggini E, Parkinson JR, Halford S, et al.: Association studies of insulin receptor substrate 1 gene (IRS1) variants in type 2 diabetes samples enriched for family history and early age of onset. Diabetes 2004, 53:3319–3322.

    Article  PubMed  CAS  Google Scholar 

  22. Florez JC, Sjogren M, Burtt N, et al.: Association testing in 9,000 people fails to confirm the association of the insulin receptor substrate-1 G972R polymorphism with type 2 diabetes. Diabetes 2004, 53:3313–3318.

    Article  PubMed  CAS  Google Scholar 

  23. Hansen SK, Gjesing AP, Rasmussen SK, et al.: Large-scale studies of the Hph1 insulin gene variable number of tandem repeats polymorphism in relation to type 2 diabetes mellitus and insulin release. Diabetologia 2004, 47:1079–1087.

    Article  PubMed  CAS  Google Scholar 

  24. Bennett A, Sovio U, Ruokonen A, et al.: No association between insulin gene variation and adult metabolic phenotypes in a large Finnish birth cohort. Diabetologia 2005, 48:886–891.

    Article  PubMed  CAS  Google Scholar 

  25. Florez JC, Wiltshire S, Agapakis CM, et al.: High-density haplotype structure and association testing of the insulin-degrading enzyme gene with type 2 diabetes in 4,206 people. Diabetes 2006, 55:128–135.

    Article  PubMed  CAS  Google Scholar 

  26. Chinnery PF, Elliott HR, Patel SK, et al.: Role of the mitochondrial DNA 16184-16193 poly-C tract in type 2 diabetes. Lancet 2005, 366:1650–1651.

    Article  PubMed  CAS  Google Scholar 

  27. McCarthy MI, Groop P-H, Hansen T: Making the right associations. Diabetologia 2005, 48:1241–1243.

    Article  PubMed  CAS  Google Scholar 

  28. Patterson M, Cardon L: Replication publication. PLoS Biol 2005, 3:e327.

    Article  PubMed  CAS  Google Scholar 

  29. Winckler W, Burtt NP, Holmkvist J, et al.: Association of common variation in the HNF1alpha gene region with risk of type 2 diabetes. Diabetes 2005, 54:2336–2342.

    Article  PubMed  CAS  Google Scholar 

  30. Weedon MN, Owen KR, Shields B, et al.: A large-scale association analysis of common variation in the HNF1alpha gene in the UK Caucasian population. Diabetes 2005, 54:2487–2491.

    Article  PubMed  CAS  Google Scholar 

  31. Weedon MN, Frayling TM, Shields B, et al.: Genetic regulation of birth weight and fasting glucose by a common polymorphism in the islet cell promoter of the glucokinase gene. Diabetes 2005, 54:576–581.

    Article  PubMed  CAS  Google Scholar 

  32. Gunton JE, Kulkarni RN, Yim S, et al.: Loss of ARNT/ HIF1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 2005, 122:337–349.

    Article  PubMed  CAS  Google Scholar 

  33. Yang Q, Graham TE, Mody N, et al.: Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005, 436:356–362.

    Article  PubMed  CAS  Google Scholar 

  34. Risch N, Merikangas K: The future of genetic studies of complex human diseases. Science 1996, 273:1516–1517.

    Article  PubMed  CAS  Google Scholar 

  35. Love-Gregory L, Wasson J, Ma J, et al.: A common polymorphism in the upstream promoter region of the hepatocyte nuclear factor-4 gene on chromosome 20q is associated with type 2 diabetes and appears to contribute to the evidence for linkage in an Ashkenazi Jewish population. Diabetes 2004, 53:1134–1140.

    Article  PubMed  CAS  Google Scholar 

  36. Silander K, Mohlke KL, Scott LJ, et al.: Genetic variation near the hepatocyte nuclear factor-4 gene predicts susceptibility to type 2 diabetes. Diabetes 2004, 53:1141–1149.

    Article  PubMed  CAS  Google Scholar 

  37. Scott L, Mohlke K, Collins FS, et al.: Modest TD association of HNF4A P2 promoter SNPs observed in meta-analysis of more than 18,000 T2D individuals and controls [abstract]. Am J Hum Genet 2005, 77(suppl):1779.

    Google Scholar 

  38. Bento JL, Palmer ND, Mychaleckyj JC, et al.: Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes. Diabetes 2004, 53:3007–3012.

    Article  PubMed  CAS  Google Scholar 

  39. Florez JC, Agapakis CM, Burtt NP, et al.: Association testing of the protein tyrosine phosphatase 1B gene (PTPN1) with type 2 diabetes in 7,883 people. Diabetes 2005, 54:1884–1891.

    Article  PubMed  CAS  Google Scholar 

  40. Vasseur F, Helbecque N, Dina C, et al.: Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Hum Mol Genet 2002, 11:2607–2614.

    Article  PubMed  CAS  Google Scholar 

  41. Walder K, Kerr-Bayles L, Civitarese A, et al.: The mitochondrial rhomboid protease PSARL is a new candidate gene for type 2 diabetes. Diabetologia 2005, 48:459–468.

    Article  PubMed  CAS  Google Scholar 

  42. Meyre D, Bouatia-Naji N, Tounian A, et al.: Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat Genet 2005, 37:863–867.

    Article  PubMed  CAS  Google Scholar 

  43. McCarthy MI, Zeggini E, Rayner W, et al.: Combined analysis of 4500 single nucleotide polymorphisms from chromosome 1q21-25 in samples from eight linked populations reveals shared type 2 diabetes susceptibility variants [abstract]. Am J Hum Genet 2005, 77(suppl):88.

    Google Scholar 

  44. Grant SFA, Thorleifsson G, Reynisdottir I, et al.: Variant of a gene located on chromosome 10q confers risk of type 2 diabetes mellitus [abstract]. Am J Hum Genet 2005, 77(suppl):280.

    Article  Google Scholar 

  45. Li C, Scott LJ, Boehnke M: Assessing whether an allele can account in part for a linkage signal: the Genotype-IBD Sharing Test (GIST). Am J Hum Genet 2004, 74:418–431.

    Article  PubMed  CAS  Google Scholar 

  46. Palmer LJ, Cardon LR: Shaking the tree: mapping complex disease genes with linkage disequilibrium. Lancet 2005, 366:1223–1234.

    Article  PubMed  CAS  Google Scholar 

  47. Altshuler D, Brooks LD, Chakravarti A, et al.: A haplotype map of the human genome. Nature 2005, 437:1299–1320.

    Article  CAS  Google Scholar 

  48. Zeggini E, Rayner W, Morris A, et al.: An evaluation of HapMap sample size and tagging SNP performance in large-scale empirical and simulated data sets. Nat Genet 2005, 37:1320–1322.

    Article  PubMed  CAS  Google Scholar 

  49. Sharp AJ, Locke DP, McGrath SD, et al.: Segmental duplications and copy-number variation in the human genome. Am J Hum Genet 2005, 77:78–88.

    Article  PubMed  CAS  Google Scholar 

  50. Morley M, Molony CM, Weber TM, et al.: Genetic analysis of genome-wide variation in human gene expression. Nature 2004, 430:743–747. A clear and powerful description of the potential of eQTL methods.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark I. McCarthy MD, FRCP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, M.I., Zeggini, E. Genetics of type 2 diabetes. Curr Diab Rep 6, 147–154 (2006). https://doi.org/10.1007/s11892-006-0026-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-006-0026-7

Keywords

Navigation