Skip to main content

Advertisement

Log in

Can Circulating MicroRNAs Become the Test of Choice for Colorectal Cancer?

  • Translational Colorectal Oncology (Y Jiang, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

MicroRNAs (miRNAs) are small noncoding RNA strings of 19–25 nucleotides, encoded by eukaryotic genomic DNA, which function in the posttranscriptional regulation of target gene expression via base pairing with complementary sequences in messenger RNAs (mRNAs), to induce mRNA degradation and translational inhibition. Aberrant miRNA modifications occur at a very early stage in colorectal cancer (CRC) development and are widely described as essential players in its progression. As circulating cell-free miRNAs have become identified, the potential of cell-free miRNAs in the blood or other body fluids for use as biomarkers for cancer detection has become increasingly evident. In this review, we summarize the progress of miRNA analyses as noninvasive biomarkers for cancer detection, estimation of prognosis, and prediction of chemotherapeutic agent response in CRC. We also discuss the obstacles that have limited the routine use of miRNA biomarkers in the clinical setting and describe how these obstacles could be overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.

    Article  PubMed  CAS  Google Scholar 

  2. Gupta AK, Brenner DE, Turgeon DK. Early detection of colon cancer: new tests on the horizon. Mol Diagn Ther. 2008;12:77–85.

    Article  PubMed  Google Scholar 

  3. Pawa N, Arulampalam T, Norton JD. Screening for colorectal cancer: established and emerging modalities. Nat Rev Gastroenterol Hepatol. 2011;8:711–22.

    Article  PubMed  CAS  Google Scholar 

  4. Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4:143–59.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Levin B. Molecular screening testing for colorectal cancer. Clin Cancer Res. 2006;12:5014–7.

    Article  PubMed  CAS  Google Scholar 

  6. Smith RA, Cokkinides V, Brooks D, et al. Cancer screening in the United States, 2010: a review of current American Cancer Society guidelines and issues in cancer screening. CA Cancer J Clin. 2010;60:99–119.

    Article  PubMed  Google Scholar 

  7. Ahlquist DA, Sargent DJ, Loprinzi CL, et al. Stool DNA and occult blood testing for screen detection of colorectal neoplasia. Ann Intern Med. 2008;149:441–50. W81.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Johnson PJ, Lo YM. Plasma nucleic acids in the diagnosis and management of malignant disease. Clin Chem. 2002;48:1186–93.

    PubMed  CAS  Google Scholar 

  9. Sidransky D. Emerging molecular markers of cancer. Nat Rev Cancer. 2002;2:210–9.

    Article  PubMed  CAS  Google Scholar 

  10. Iorio MV, Croce CM. microRNA involvement in human cancer. Carcinogenesis. 2012;33:1126–33.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Taft RJ, Pang KC, Mercer TR, et al. Non-coding RNAs: regulators of disease. J Pathol. 2010;220:126–39.

    Article  PubMed  CAS  Google Scholar 

  12. Slaby O, Svoboda M, Michalek J, et al. MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol Cancer. 2009;8:102.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Madhavan D, Cuk K, Burwinkel B, et al. Cancer diagnosis and prognosis decoded by blood-based circulating microRNA signatures. Front Genet. 2013;4:116.

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.

    Article  PubMed  CAS  Google Scholar 

  16. Zhu W, Qin W, Atasoy U, et al. Circulating microRNAs in breast cancer and healthy subjects. BMC Res Notes. 2009;2:89.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108:5003–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Turchinovich A, Weiz L, Langheinz A, et al. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39:7223–33.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Vickers KC, Remaley AT. Lipid-based carriers of microRNAs and intercellular communication. Curr Opin Lipidol. 2012;23:91–7.

    Article  PubMed  CAS  Google Scholar 

  20. Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  PubMed  CAS  Google Scholar 

  21. Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012;110:483–95.

    Article  PubMed  CAS  Google Scholar 

  22. Turchinovich A, Weiz L, Burwinkel B. Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci. 2012;37:460–5.

    Article  PubMed  CAS  Google Scholar 

  23. Fabbri M. miRNAs as molecular biomarkers of cancer. Expert Rev Mol Diagn. 2010;10:435–44.

    Article  PubMed  CAS  Google Scholar 

  24. Chen X, Liang H, Zhang J, et al. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 2012;22:125–32.

    Article  PubMed  CAS  Google Scholar 

  25. Lodes MJ, Caraballo M, Suciu D, et al. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One. 2009;4:e6229.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ng EK, Chong WW, Jin H, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58:1375–81.

    Article  PubMed  CAS  Google Scholar 

  27. Huang Z, Huang D, Ni S, et al. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 2010;127:118–26.

    Article  PubMed  CAS  Google Scholar 

  28. Wang Q, Huang Z, Ni S, et al. Plasma miR-601 and miR-760 are novel biomarkers for the early detection of colorectal cancer. PLoS One. 2012;7:e44398.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Asangani IA, Rasheed SA, Nikolova DA, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27:2128–36.

    Article  PubMed  CAS  Google Scholar 

  30. Wang P, Zou F, Zhang X, et al. microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res. 2009;69:8157–65.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Kanaan Z, Rai SN, Eichenberger MR, et al. Plasma miR-21: a potential diagnostic marker of colorectal cancer. Ann Surg. 2012;256:544–51.

    Article  PubMed  Google Scholar 

  32. Liu GH, Zhou ZG, Chen R, et al. Serum miR-21 and miR-92a as biomarkers in the diagnosis and prognosis of colorectal cancer. Tumour Biol. 2013;34:2175–81.

    Article  PubMed  CAS  Google Scholar 

  33. Toiyama Y, Takahashi M, Hur K, et al. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst. 2013;105:849–59.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Baraniskin A, Nopel-Dunnebacke S, Ahrens M, et al. Circulating U2 small nuclear RNA fragments as a novel diagnostic biomarker for pancreatic and colorectal adenocarcinoma. Int J Cancer. 2013;132:E48–57.

    Article  PubMed  CAS  Google Scholar 

  35. Wang S, Xiang J, Li Z, et al. A plasma microRNA panel for early detection of colorectal cancer. Int J Cancer. 2013. doi:10.1002/ijc.28136.

    Google Scholar 

  36. Wang J, Huang SK, Zhao M, et al. Identification of a circulating microRNA signature for colorectal cancer detection. PLoS One. 2014;9:e87451.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hofsli E, Sjursen W, Prestvik WS, et al. Identification of serum microRNA profiles in colon cancer. Br J Cancer. 2013;108:1712–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Kanaan Z, Roberts H, Eichenberger MR, et al. A plasma microRNA panel for detection of colorectal adenomas: a step toward more precise screening for colorectal cancer. Ann Surg. 2013;258:400–8. This was an ingenious study that showed the usefulness of plasma miRNA panels for detecting colorectal ADN. Particularly, they showed that a certain miRNA panel could successfully discriminate ADN from CRC. This was first report that elegantly showed such a differentiation.

    Article  PubMed  Google Scholar 

  39. Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9:582–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11:1487–95.

    Article  PubMed  CAS  Google Scholar 

  41. Hur K, Toiyama Y, Takahashi M, et al. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut. 2013;62:1315–26.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Cheng H, Zhang L, Cogdell DE, et al. Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One. 2011;6:e17745.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Toiyama Y, Hur K, Tanaka K, et al. Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer. Ann Surg. 2014;259:735–43. The authors showed that serum miR-200c (known to be related to EMT) is a marker for lymph node metastasis, tumor recurrence, and prognosis.

    Article  PubMed  Google Scholar 

  44. Menendez P, Padilla D, Villarejo P, et al. Prognostic implications of serum microRNA-21 in colorectal cancer. J Surg Oncol. 2013;108:369–73.

    Article  PubMed  CAS  Google Scholar 

  45. Pu XX, Huang GL, Guo HQ, et al. Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol. 2011;25:1674–80.

    Article  Google Scholar 

  46. Yang IP, Tsai HL, Huang CW, et al. The functional significance of microRNA-29c in patients with colorectal cancer: a potential circulating biomarker for predicting early relapse. PLoS One. 2013;8:e66842.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Wang LG, Gu J. Serum microRNA-29a is a promising novel marker for early detection of colorectal liver metastasis. Cancer Epidemiol. 2012;36:e61–7.

    Article  PubMed  CAS  Google Scholar 

  48. Chen Q, Xia HW, Ge XJ, et al. Serum miR-19a predicts resistance to FOLFOX chemotherapy in advanced colorectal cancer cases. Asian Pac J Cancer Prev. 2013;14:7421–6.

    Article  PubMed  Google Scholar 

  49. Kjersem JB, Ikdahl T, Lingjaerde OC, et al. Plasma microRNAs predicting clinical outcome in metastatic colorectal cancer patients receiving first-line oxaliplatin-based treatment. Mol Oncol. 2014;8:59–67. This was the first study to clearly associate circulating miRNAs with chemotherapy response in metastatic CRC, and to show their predictive utility among these patients.

    Article  PubMed  CAS  Google Scholar 

  50. Rasmussen MH, Jensen NF, Tarpgaard LS, et al. High expression of microRNA-625-3p is associated with poor response to first-line oxaliplatin based treatment of metastatic colorectal cancer. Mol Oncol. 2013;7:637–46.

    Article  PubMed  CAS  Google Scholar 

  51. Takahashi M, Cuatrecasas M, Balaguer F, et al. The clinical significance of MiR-148a as a predictive biomarker in patients with advanced colorectal cancer. PLoS One. 2012;7:e46684.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Zhang J, Zhang K, Bi M, et al. Circulating microRNA expressions in colorectal cancer as predictors of response to chemotherapy. Anticancer Drugs. 2014;25:346–52.

    Article  PubMed  CAS  Google Scholar 

  53. Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet. 2008;24:133–41.

    Article  PubMed  CAS  Google Scholar 

  54. Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2010;11:31–46.

    Article  PubMed  CAS  Google Scholar 

  55. Baker M. MicroRNA profiling: separating signal from noise. Nat Methods. 2010;7:687–92.

    Article  PubMed  CAS  Google Scholar 

  56. Pritchard CC, Kroh E, Wood B, et al. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila). 2012;5:492–7.

    Article  CAS  Google Scholar 

  57. McDonald JS, Milosevic D, Reddi HV, et al. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem. 2011;57:833–40.

    Article  PubMed  CAS  Google Scholar 

  58. Kirschner MB, Kao SC, Edelman JJ, et al. Haemolysis during sample preparation alters microRNA content of plasma. PLoS One. 2011;6:e24145.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Ma Y, Wang X, Jin H. Methylated DNA and microRNA in body fluids as biomarkers for cancer detection. Int J Mol Sci. 2013;14:10307–31.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jones K, Nourse JP, Keane C, et al. Plasma microRNA are disease response biomarkers in classical Hodgkin lymphoma. Clin Cancer Res. 2014;20:253–64.

    Article  PubMed  CAS  Google Scholar 

  61. Day E, Dear PH, McCaughan F. Digital PCR strategies in the development and analysis of molecular biomarkers for personalized medicine. Methods. 2013;59:101–7.

    Article  PubMed  CAS  Google Scholar 

  62. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110:13–21.

    Article  PubMed  CAS  Google Scholar 

  63. Deng D, Liu Z, Du Y. Epigenetic alterations as cancer diagnostic, prognostic, and predictive biomarkers. Adv Genet. 2010;71:125–76.

    Article  PubMed  CAS  Google Scholar 

  64. Cho WC. Circulating microRNAs as minimally invasive biomarkers for cancer theragnosis and prognosis. Front Genet. 2011;2:7.

    PubMed  PubMed Central  Google Scholar 

  65. Cassinotti E, Melson J, Liggett T, et al. DNA methylation patterns in blood of patients with colorectal cancer and adenomatous colorectal polyps. Int J Cancer. 2012;131:1153–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Radpour R, Barekati Z, Kohler C, et al. Hypermethylation of tumor suppressor genes involved in critical regulatory pathways for developing a blood-based test in breast cancer. PLoS One. 2011;6:e16080.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Sturgeon CM, Hoffman BR, Chan DW, et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines for use of tumor markers in clinical practice: quality requirements. Clin Chem. 2008;54:e1–e10.

    Article  PubMed  CAS  Google Scholar 

  68. Meyer SU, Pfaffl MW, Ulbrich SE. Normalization strategies for microRNA profiling experiments: a ‘normal’ way to a hidden layer of complexity? Biotechnol Lett. 2010;32:1777–88.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Mikio Kawamura, Yuji Toiyama, Koji Tanaka, Yasuhiro Inoue, Yasuhiko Mohri, and Masato Kusunoki declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Toiyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawamura, M., Toiyama, Y., Tanaka, K. et al. Can Circulating MicroRNAs Become the Test of Choice for Colorectal Cancer?. Curr Colorectal Cancer Rep 10, 403–410 (2014). https://doi.org/10.1007/s11888-014-0240-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-014-0240-7

Keywords

Navigation