Skip to main content
Log in

Early Detection of Colon Cancer

New Tests on the Horizon

  • Cancer
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

This year, the American Cancer Society reported that the rate of decline in both the incidence and mortality of colorectal cancer has increased over the last two decades. This success is felt to be attributable to the early detection and treatment of colonic adenomas and early-stage colorectal cancers. However, the current recommended ‘menu of options’ for screening is limited by poor patient acceptance, low sensitivity, and both high cost and poor accessibility for application to a large general screening population (colonoscopy). Computerized tomography and magnetic resonance colonography offer an alternative method for the identification of polyps and early lesions in certain patients, but have cost, access, and acceptance limitations that are similar to those of colonoscopy; thus, they present similar barriers to their use in broad population screening. These limitations provide a strong rationale for the development of early colorectal cancer detection biomarkers that are simple to use and are cost effective.

A successful biomarker or biomarker panel, coupled with the colonoscopic follow-up of only those patients with positive results, would reduce the burden and morbidity associated with the screening of colonoscopy. This would most likely result in enhanced adherence to colorectal screening, as well as a dramatic reduction in the incidence and mortality rates of colorectal cancer. In this paper, we review recent advances in the discovery of potential colorectal cancer biomarkers. Their applicability to clinical population screening will require large prospective validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Table II

Similar content being viewed by others

References

  1. American Cancer Society. Cancer facts and figures 2008 [online]. Available from URL: http://www.cancer.org/downloads/STT/2008CAFFfinalsecured.pdf [Accessed 2008 Feb 25]

  2. Meissner HI, Breen N, Klabunde CN, et al. Patterns of colorectal cancer screening uptake among men and women in the United States. Cancer Epidemiol Biomarkers Prev2006; 15(2): 389–94

    Article  PubMed  Google Scholar 

  3. CDC. National colorectal awareness month: March 2008. Morb Mortal Wkly Rep 2008 Mar 14; 57 (10): 1 [online]. Available from URL: http://www.cdc.gov/mmwR/preview/mmwrhtml/mm5710a1.htm [Accessed 2008 Mar 31]

  4. US Department of Health and Human Services. The guide to clinical preventive services 2006: recommendations of the US preventive Services Task Force. Rockville (MD): United Health Foundation, 2006 [online]. Available from URL: http://www.ahrq.gov/clinic/pocketgd/index.html [Accessed 2008 Mar 7]

  5. American Cancer Society. American Cancer Society guidelines on screening and surveillance for the early detection of adenomatous polyps and colorectal cancer: 2001. Altanta (GA): American Cancer Society, 2001

    Google Scholar 

  6. Hurlstone DP, Karajeh M, Sanders DS, et al. Rectal aberrant crypt foci identified using high-magnification-chromoscopic colonoscopy: biomarkers for flat and depressed neoplasia. Am J Gastroenterol 2005; 100(6): 1283–9

    Article  PubMed  Google Scholar 

  7. Chen WD, Han ZJ, Skoletsky J, et al. Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J Natl Cancer Inst 2005; 97(15): 1124–32

    Article  PubMed  CAS  Google Scholar 

  8. Lieberman DA, Weiss DG, Bond JH, et al. Use of colonoscopy to screen asymptomatic adults for colorectal cancer. Veterans Affairs Cooperative Study Group 380. N Engl J Med 2000; 343(3): 162–8

    Article  PubMed  CAS  Google Scholar 

  9. Davies RJ, Miller R, Coleman N. Colorectal cancer screening: prospects for molecular stool analysis. Nat Rev Cancer 2005; 5(3): 199–209

    Article  PubMed  CAS  Google Scholar 

  10. Rockey DC, Koch J, Yee J, et al. Prospective comparison of air-contrast barium enema and colonoscopy in patients with fecal occult blood: a pilot study. Gastrointest Endosc 2004; 60(6): 953–8

    Article  PubMed  Google Scholar 

  11. Cotton PB, Durkalski VL, Pineau BC, et al. Computed tomographic colonography (virtual colonoscopy): a multicenter comparison with standard colonoscopy for detection of colorectal neoplasia. JAMA 2004; 291(14): 1713–9

    Article  PubMed  CAS  Google Scholar 

  12. Mulhall BP, Veerappan GR, Jackson JL. Meta-analysis: computed tomographic colonography. Ann Intern Med 2005; 142(8): 635–50

    PubMed  Google Scholar 

  13. Florie JJ, Birnie EE, van Gelder RERE, et al. MR colonography with limited bowel preparation: patient acceptance compared with that of full-preparation colonoscopy. Radiology 2007; 245(1): 150–9

    Article  PubMed  Google Scholar 

  14. Florie JJ, Jensch SS, Nievelstein RARAJ, et al. MR colonography with limited bowel preparation compared with optical colonoscopy in patients at increased risk for colorectal cancer. Radiology 2007; 243(1): 122–31

    Article  PubMed  Google Scholar 

  15. Vijan S, Inadomi J, Hayward RA, et al. Projections of demand and capacity for colonoscopy related to increasing rates of colorectal cancer screening in the United States. Aliment Pharmacol Ther 2004; 20(5): 507–15

    Article  PubMed  CAS  Google Scholar 

  16. Gupta AK, Pretlow TP, Schoen RE. Aberrant crypt foci: what we know and what we need to know. Clin Gastroenterol Hepatol 2007; 5(5): 526–33

    Article  PubMed  Google Scholar 

  17. Bird RP. Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett 1987; 37(2): 147–51

    Article  PubMed  CAS  Google Scholar 

  18. Pretlow TP, Barrow BJ, Ashton WS, et al. Aberrant crypts: putative preneoplastic foci in human colonic mucosa. Cancer Res 1991; 51(5): 1564–7

    PubMed  CAS  Google Scholar 

  19. Yokota T, Sugano K, Kondo H, et al. Detection of aberrant crypt foci by magnifying colonoscopy. Gastrointest Endosc 1997; 46(1): 61–5

    Article  PubMed  CAS  Google Scholar 

  20. McLellan EA, Bird RP. Specificity study to evaluate induction of aberrant crypts in murine colons. Cancer Res 1988; 48(21): 6183–6

    PubMed  CAS  Google Scholar 

  21. McLellan EA, Bird RP. Aberrant crypts: potential preneoplastic lesions in the murine colon. Cancer Res 1988; 48(21): 6187–92

    PubMed  CAS  Google Scholar 

  22. McLellan EA, Medline A, Bird RP. Dose response and proliferative characteristics of aberrant crypt foci: putative preneoplastic lesions in rat colon. Carcinogenesis 1991; 12(11): 2093–8

    Article  PubMed  CAS  Google Scholar 

  23. McLellan EA, Medline A, Bird RP. Sequential analyses of the growth and morphological characteristics of aberrant crypt foci: putative preneoplastic lesions. Cancer Res 1991; 51(19): 5270–4

    PubMed  CAS  Google Scholar 

  24. McLellan E, Bird RP. Effect of disulfiram on 1,2-dimethylhydrazine- and azoxymethane-induced aberrant crypt foci. Carcinogenesis 1991; 12(6): 969–72

    Article  PubMed  CAS  Google Scholar 

  25. Magnuson BA, Carr I, Bird RP. Ability of aberrant crypt foci characteristics to predict colonic tumor incidence in rats fed cholic acid. Cancer Res 1993; 53(19): 4499–504

    PubMed  CAS  Google Scholar 

  26. Lam LK, Zhang J. Reduction of aberrant crypt formation in the colon of CF1 mice by potential chemopreventive agents. Carcinogenesis 1991; 12(12): 2311–5

    Article  PubMed  CAS  Google Scholar 

  27. Corpet DE, Tache S. Most effective colon cancer chemopreventive agents in rats: a systematic review of aberrant crypt foci and tumor data, ranked by potency. Nutr Cancer 2002; 43(1): 1–21

    Article  PubMed  CAS  Google Scholar 

  28. Shpitz B, Bomstein Y, Mekori Y, et al. Aberrant crypt foci in human colons: distribution and histomorphologic characteristics. Hum Pathol 1998; 29(5): 469–75

    Article  PubMed  CAS  Google Scholar 

  29. Roncucci L, Stamp D, Medline A, et al. Identification and quantification of aberrant crypt foci and microadenomas in the human colon. Hum Pathol 1991; 22(3): 287–94

    Article  PubMed  CAS  Google Scholar 

  30. Takayama T, Katsuki S, Takahashi Y, et al. Aberrant crypt foci of the colon as precursors of adenoma and cancer. N Engl J Med 1998; 339(18): 1277–84

    Article  PubMed  CAS  Google Scholar 

  31. Moxon D, Raza M, Kenney R, et al. Relationship of aging and tobacco use with the development of aberrant crypt foci in a predominantly African-American population. Clin Gastroenterol Hepatol 2005; 3(3): 271–8

    Article  PubMed  Google Scholar 

  32. Adler DG, Gostout CJ, Sorbi D, et al. Endoscopic identification and quantification of aberrant crypt foci in the human colon. Gastrointest Endosc 2002; 56(5): 657–62

    Article  PubMed  Google Scholar 

  33. Rudolph RE, Dominitz JA, Lampe JW, et al. Risk factors for colorectal cancer in relation to number and size of aberrant crypt foci in humans. Cancer Epidemiol Biomarkers Prev 2005; 14(3): 605–8

    Article  PubMed  Google Scholar 

  34. Seike K, Koda K, Oda K, et al. Assessment of rectal aberrant crypt foci by standard chromoscopy and its predictive value for colonic advanced neoplasms. Am J Gastroenterol 2006; 101(6): 1362–9

    Article  PubMed  Google Scholar 

  35. Stevens RG, Swede H, Heinen CD, et al. Aberrant crypt foci in patients with a positive family history of sporadic colorectal cancer. Cancer Lett 2007 Apr 18; 248(2): 262–8

    Article  PubMed  CAS  Google Scholar 

  36. Bouzourene H, Chaubert P, Seelentag W, et al. Aberrant crypt foci in patients with neoplastic and nonneoplastic colonic disease. Hum Pathol 1999; 30(1): 66–71

    Article  PubMed  CAS  Google Scholar 

  37. Siu IM, Pretlow TG, Amini SB, et al. Identification of dysplasia in human colonic aberrant crypt foci. Am J Pathol 1997; 150(5): 1805–13

    PubMed  CAS  Google Scholar 

  38. Osborn NK, Ahlquist DA. Stool screening for colorectal cancer: molecular approaches. Gastroenterology 2005; 128(1): 192–206

    Article  PubMed  CAS  Google Scholar 

  39. Sidransky D, Tokino T, Hamilton SR, et al. Identification of ras oncogene mutations in the stool of patients with curable colorectal tumors. Science 1992; 256(5053): 102–5

    Article  PubMed  CAS  Google Scholar 

  40. Traverso G, Shuber A, Levin B, et al. Detection of APC mutations in fecal DNA from patients with colorectal tumors. N Engl J Med 2002; 346(5): 311–20

    Article  PubMed  CAS  Google Scholar 

  41. Ahlquist DA, Skoletsky JE, Boynton KA, et al. Colorectal cancer screening by detection of altered human DNA in stool: feasibility of a multitarget assay panel. Gastroenterology 2000; 119(5): 1219–27

    Article  PubMed  CAS  Google Scholar 

  42. Tagore KS, Lawson MJ, Yucaitis JA, et al. Sensitivity and specificity of a stool DNA multitarget assay panel for the detection of advanced colorectal neoplasia. Clin Colorectal Cancer 2003; 3(1): 47–53

    Article  PubMed  CAS  Google Scholar 

  43. Petko Z, Ghiassi M, Shuber A, et al. Aberrantly methylated CDKN2A, MGMT, and MLH1 in colon polyps and in fecal DNA from patients with colorectal polyps. Clin Cancer Res 2005; 11(3): 1203–9

    PubMed  CAS  Google Scholar 

  44. Song K, Fendrick AM, Ladabaum U. Fecal DNA testing compared with conventional colorectal cancer screening methods: a decision analysis. Gastroenterology 2004; 126(5): 1270–9

    Article  PubMed  Google Scholar 

  45. Brenner DE, Rennert G. Fecal DNA biomarkers for the detection of colorectal neoplasia: attractive, but is it feasible? J Natl Cancer Inst 2005; 97(15): 1107–9

    Article  PubMed  Google Scholar 

  46. Hundt S, Haug U, Brenner H. Blood markers for early detection of colorectal cancer: a systematic review. Cancer Epidemiol Biomarkers Prev 2007; 16(10): 1935–53

    Article  PubMed  CAS  Google Scholar 

  47. Fletcher RH. Carcinoembryonic antigen. Ann Intern Med 1986; 104(1): 66–73

    PubMed  CAS  Google Scholar 

  48. Kozwich DL, Kramer LC, Mielicki WP, et al. Application of cancer procoagulant as an early detection tumor marker. Cancer 1994; 74(4): 1367–76

    Article  PubMed  CAS  Google Scholar 

  49. Cordero OJ, Ayude D, Nogueira M, et al. Preoperative serum CD26 levels: diagnostic efficiency and predictive value for colorectal cancer. Br J Cancer 2000; 83(9): 1139–46

    Article  PubMed  CAS  Google Scholar 

  50. de la Haba-Rodriguez J, Macho A, Calzado MA, et al. Soluble dipeptidyl peptidase IV (CD-26) in serum of patients with colorectal carcinoma. Neoplasma 2002; 49(5): 307–11

    Google Scholar 

  51. Kerber A, Trojan J, Herrlinger K, et al. The new DR-70 immunoassay detects cancer of the gastrointestinal tract: a validation study. Aliment Pharmacol Ther 2004; 20(9): 983–7

    Article  PubMed  CAS  Google Scholar 

  52. Soroush AR, Zadeh HM, Moemeni M, et al. Plasma prolactin in patients with colorectal cancer. BMC Cancer 2004; 4: 97

    Article  PubMed  Google Scholar 

  53. Fedarko NS, Jain A, Karadag A, et al. Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clin Cancer Res 2001; 7(12): 4060–6

    PubMed  CAS  Google Scholar 

  54. Leman ES, Schoen RE, Weissfeld JL, et al. Initial analyses of colon cancer-specific antigen (CCSA)-3 and CCSA-4 as colorectal cancer-associated serum markers. Cancer Res 2007; 67(12): 5600–5

    Article  PubMed  CAS  Google Scholar 

  55. Ward DG, Suggett N, Cheng Y, et al. Identification of serum biomarkers for colon cancer by proteomic analysis. Br J Cancer 2006; 94(12): 1898–905

    Article  PubMed  CAS  Google Scholar 

  56. de Noo ME, Deelder A, van der Werff M, et al. MALDI-TOF serum protein profiling for the detection of breast cancer. Onkologie 2006; 29(11): 501–6

    Article  Google Scholar 

  57. Ransohoff DF. Bias as a threat to the validity of cancer molecular-marker research. Nat Rev Cancer 2005; 5(2): 142–9

    Article  PubMed  CAS  Google Scholar 

  58. Ransohoff DF. Colon cancer screening in 2005: status and challenges. Gastroenterology 2005; 128(6): 1685–95

    Article  PubMed  Google Scholar 

  59. Zhao J, Qiu W, Simeone DM, et al. N-linked glycosylation profiling of pancreatic cancer serum using capillary liquid phase separation coupled with mass spec-trometric analysis. J Proteome Res 2007; 6(3): 1126–38

    Article  PubMed  CAS  Google Scholar 

  60. Zhu Y, Wu R, Sangha N, et al. Classifications of ovarian cancer tissues by proteomic patterns. Proteomics 2006; 6(21): 5846–56

    Article  PubMed  CAS  Google Scholar 

  61. Tataryn DN, MacFarlane JK, Murray D, et al. Tube leukocyte adherence inhibition (LAI) assay in gastrointestinal (GIT) cancer. Cancer 1979; 43(3): 898–912

    Article  PubMed  CAS  Google Scholar 

  62. Liu HP, Yan ZS, Zhang SS. The application of leukocyte adherence inhibition assay to patients with colorectal cancer: comparison with serum level of carcinoembryonic antigen and sialic acid. Dis Colon Rectum 1989; 32(3): 210–3

    Article  PubMed  CAS  Google Scholar 

  63. Wang RF, Kim SJ, Robertson LH, et al. Development of a membrane-array method for the detection of human intestinal bacteria in fecal samples. Mol Cell Probes 2002; 16(5): 341–50

    Article  PubMed  CAS  Google Scholar 

  64. Kopreski MS, Benko FA, Borys DJ, et al. Somatic mutation screening: identification of individuals harboring K-ras mutations with the use of plasma DNA. J Natl Cancer Inst 2000; 92(11): 918–23

    Article  PubMed  CAS  Google Scholar 

  65. Wang JY, Hsieh JS, Chang MY, et al. Molecular detection of APC, K-ras, and p53 mutations in the serum of colorectal cancer patients as circulating biomarkers. World J Surg 2004; 28(7): 721–6

    Article  PubMed  Google Scholar 

  66. Leung WK, To KF, Man EP, et al. Quantitative detection of promoter hypermethylation in multiple genes in the serum of patients with colorectal cancer. Am J Gastroenterol 2005; 100(10): 2274–9

    Article  PubMed  CAS  Google Scholar 

  67. Umetani N, Kim J, Hiramatsu S, et al. Increased integrity of free circulating DNA in sera of patients with colorectal or periampullary cancer: direct quantitative PCR for ALU repeats. Clin Chem 2006; 52(6): 1062–9

    Article  PubMed  CAS  Google Scholar 

  68. Bustin SA, Gyselman VG, Williams NS, et al. Detection of cytokeratins 19/20 and guanylyl cyclase C in peripheral blood of colorectal cancer patients. Br J Cancer 1999; 79(11–12): 1813–20

    Article  PubMed  CAS  Google Scholar 

  69. Schiedeck TH, Wellm C, Roblick UJ, et al. Diagnosis and monitoring of colorectal cancer by L6 blood serum polymerase chain reaction is superior to carcinoembryonic antigen-enzyme-linked immunosorbent assay. Dis Colon Rectum 2003; 46(6): 818–25

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kim Turgeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, A.K., Brenner, D.E. & Turgeon, D.K. Early Detection of Colon Cancer. Mol Diag Ther 12, 77–85 (2008). https://doi.org/10.1007/BF03256273

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256273

Keywords

Navigation