Skip to main content

Advertisement

Log in

Roles for transforming growth factor-α and transforming growth factor-ß in colorectal cancer

  • Published:
Current Colorectal Cancer Reports

Abstract

This review cites some of the notable advances in the last several years in our understanding of the roles of transforming growth factor (TGF)-α and TGF-ß in neoplasia in general and colorectal cancer in particular. We have chosen to concentrate on advances that have been made in the treatment of colorectal cancer by pharmacologic blockade of the epidermal growth factor receptor axis and new insights into TGF-ß signaling in colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Coffey RJ Jr, Derynck R, Wilcox JN, et al.: Production and auto-induction of transforming growth factor-alpha in human keratinocytes. Nature 1987, 328:817–820.

    Article  PubMed  CAS  Google Scholar 

  2. Barnard JA, Graves-Deal R, Pittelkow MR, et al.: Auto- and cross-induction within the mammalian epidermal growth factor-related peptide family. J Biol Chem 1994, 269:22817–22822.

    PubMed  CAS  Google Scholar 

  3. Coffey RJ: Transforming growth factors. In Accomplishments in Oncology-Premalignant Lesions of the Esophagus and Stomach. Edited by Hirschowitz BI. Philadelphia: JB Lippincott; 1989:97–104.

    Google Scholar 

  4. Harris RC, Chung E, Coffey RJ: EGF receptor ligands. In The EGF Receptor Family. Edited by Carpenter G. London: Elsevier Academic Press; 2005:3–14.

    Google Scholar 

  5. Li C, Franklin JL, Graves-Deal R, et al.: Myristoylated Naked2 escorts transforming growth factor alpha to the basolateral plasma membrane of polarized epithelial cells. Proc Natl Acad Sci U S A 2004, 101:5571–5576.

    Article  PubMed  CAS  Google Scholar 

  6. Lee D, Pearsall RS, Das S, et al.: Epiregulin is not essential for development of intestinal tumors but is required for protection from intestinal damage. Mol Cell Biol 2004, 24:8907–8916.

    Article  PubMed  CAS  Google Scholar 

  7. Roberts RB, Min L, Washington MK, et al.: Importance of epidermal growth factor receptor signaling in establishment of adenomas and maintenance of carcinomas during intestinal tumorigenesis. Proc Natl Acad Sci U S A 2002, 99:1521–1526. As has been demonstrated in Drosophila eye development, there appears to be iterative use of EGFR signaling in intestinal neoplasia, both during a post-initiation establishment phase of tumorigenesis and later during tumor progression.

    Article  PubMed  CAS  Google Scholar 

  8. Rothenberg ML, Lafleur B, Levy DE, et al.: Randomized phase II trial of the clinical and biological effects of two dose levels of gefitinib in patients with recurrent colorectal adenocarcinoma. J Clin Oncol 2005, 23:9265–9274.

    Article  PubMed  CAS  Google Scholar 

  9. Tabernero J, Schoffski P, Rojo F, et al.: Combined anti-EGFR blockade: a phase I pharmacokinetic and molecular pharmacodynamic study of cetuximab (Erbitux) and gefitinib (Iressa) in patients with advanced colorectal, head and neck and non-small cell lung cancer expressing the EGFR [abstract]. Proceedings of the 2005 Meeting of the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics. Philadelphia: American Association for Cancer Research; 2005:82.

    Google Scholar 

  10. Dong J, Opresko LK, Dempsey PJ, et al.: Metalloproteasemediated ligand release regulates autocrine signaling through the epidermal growth factor receptor. Proc Natl Acad Sci U S A 1999, 96:6235–6240.

    Article  PubMed  CAS  Google Scholar 

  11. Fujimoto N, Wislez M, Zhang J, et al.: High expression of ErbB family members and their ligands in lung adenocarcinomas that are sensitive to inhibition of epidermal growth factor receptor. Cancer Res 2005, 65:11478–11485.

    Article  PubMed  CAS  Google Scholar 

  12. Eberhard DA, Johnson BE, Amler LC, et al.: Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 2005, 23:5900–5909.

    Article  PubMed  CAS  Google Scholar 

  13. Yauch RL, Januario T, Eberhard DA, et al.: Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin Cancer Res 2005, 11:8686–8698.

    Article  PubMed  CAS  Google Scholar 

  14. Shi Y, Massague J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003, 113:685–700.

    Article  PubMed  CAS  Google Scholar 

  15. Neilson EG: Setting a trap for tissue fibrosis. Nat Med 2005, 11:373–374.

    Article  PubMed  CAS  Google Scholar 

  16. Feng XH, Derynck R: Specificity and versatility in TGF-signaling through Smads. Annu Rev Cell Dev Biol 2005, 21:659–693.

    Article  PubMed  CAS  Google Scholar 

  17. Elliott RL, Blobe GC: Role of transforming growth factor beta in human cancer. J Clin Oncol 2005, 23:2078–2093.

    Article  PubMed  CAS  Google Scholar 

  18. Hahn SA, Schutte M, Hoque AT, et al.: DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996, 271:350–353.

    Article  PubMed  CAS  Google Scholar 

  19. Riggins GJ, Kinzler KW, Vogelstein B, Thiagalingam S: Frequency of Smad gene mutations in human cancers. Cancer Res 1997, 57:2578–2580.

    PubMed  CAS  Google Scholar 

  20. Riggins GJ, Thiagalingam S, Rozenblum E, et al.: Madrelated genes in the human. Nat Genet 1996, 13:347–349.

    Article  PubMed  CAS  Google Scholar 

  21. Thiagalingam S, Lengauer C, Leach FS, et al.: Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet 1996, 13:343–346.

    Article  PubMed  CAS  Google Scholar 

  22. Blaker H, Aulmann S, Helmchen B, et al.: Loss of SMAD4 function in small intestinal adenocarcinomas: comparison of genetic and immunohistochemical findings. Pathol Res Pract 2004, 200:1–7.

    Article  PubMed  Google Scholar 

  23. Reinacher-Schick A, Baldus SE, Romdhana B, et al.: Loss of Smad4 correlates with loss of the invasion suppressor E-cadherin in advanced colorectal carcinomas. J Pathol 2004, 202:412–420.

    Article  PubMed  CAS  Google Scholar 

  24. Miyaki M, Iijima T, Konishi M, et al.: Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene 1999, 18:3098–3103.

    Article  PubMed  CAS  Google Scholar 

  25. Alazzouzi H, Alhopuro P, Salovaara R, et al.: SMAD4 as a prognostic marker in colorectal cancer. Clin Cancer Res 2005, 11:2606–2611.

    Article  PubMed  CAS  Google Scholar 

  26. Dupont S, Zacchigna L, Cordenonsi M, et al.: Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Cell 2005, 121:87–99. Mutational loss of Smad4 does not account for the extent to which Smad4 protein suppression has been observed in colorectal cancer, particularly in metastatic lesions. This article describes a novel mechanism by which Smad4, and thereby TGF-â and BMP signaling, may be abrogated through the downregulation of Smad4 by the ubiquitin ligase, Ectodermin.

    Article  PubMed  CAS  Google Scholar 

  27. Valcourt U, Kowanetz M, Niimi H, et al.: TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 2005, 16:1987–2002.

    Article  PubMed  CAS  Google Scholar 

  28. Ruzinova MB, Benezra R: Id proteins in development, cell cycle and cancer. Trends Cell Biol 2003, 13:410–418.

    Article  PubMed  CAS  Google Scholar 

  29. Stighall M, Manetopoulos C, Axelson H, Landberg G: High ID2 protein expression correlates with a favourable prognosis in patients with primary breast cancer and reduces cellular invasiveness of breast cancer cells. Int J Cancer 2005, 115:403–411.

    Article  PubMed  CAS  Google Scholar 

  30. Russell RG, Lasorella A, Dettin LE, Iavarone A: Id2 drives differentiation and suppresses tumor formation in the intestinal epithelium. Cancer Res 2004, 64:7220–7225.

    Article  PubMed  CAS  Google Scholar 

  31. Kowanetz M, Valcourt U, Bergstrom R, et al.: Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor beta and bone morphogenetic protein. Mol Cell Biol 2004, 24:4241–4254.

    Article  PubMed  CAS  Google Scholar 

  32. Hardwick JC, Van Den Brink GR, Bleuming SA, et al.: Bone morphogenetic protein 2 is expressed by, and acts upon, mature epithelial cells in the colon. Gastroenterology 2004, 126:111–121.

    Article  PubMed  CAS  Google Scholar 

  33. Haramis AP, Begthel H, van den Born M, et al.: De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 2004, 303:1684–1686.

    Article  PubMed  CAS  Google Scholar 

  34. He XC, Zhang J, Tong WG, et al.: BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 2004, 36:1117–1121.

    Article  PubMed  CAS  Google Scholar 

  35. Howe JR, Bair JL, Sayed MG, et al.: Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet 2001, 28:184–187.

    Article  PubMed  CAS  Google Scholar 

  36. Ozdamar B, Bose R, Barrios-Rodiles M, et al.: Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 2005, 307:1603–1609. This article describes a novel Smad-independent mechanism of signaling and regulation of EMT by TGF-ß. Par6, a known regulator of epithelial cell polarity and tight junction assembly, interacts with TGF-ß receptors at the cell membrane and is a substrate for the type II TGF-ß receptor. The effect of Par6 is mediated through interaction with Smurf1 which results in targeting of RhoA for degradation, thereby contributing to the loss of tight junctions. These events apparently occur independently of Smad signaling.

    Article  PubMed  CAS  Google Scholar 

  37. Bellovin DI, Bates RC, Muzikansky A, et al.: Altered localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease. Cancer Res 2005, 65:10938–10945.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Coffey MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coffey, R.J., Beauchamp, R.D. Roles for transforming growth factor-α and transforming growth factor-ß in colorectal cancer. Curr colorectal cancer rep 2, 72–77 (2006). https://doi.org/10.1007/s11888-006-0005-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-006-0005-z

Keywords

Navigation