Skip to main content

Transforming Growth Factor β

  • Living reference work entry
  • First Online:
Cancer Therapeutic Targets

Abstract

Transforming growth factor β (TGFβ) has recently emerged as an attractive therapeutic target in several human malignancies. While TGFβ has well-documented antiproliferative properties with respect to many benign and well-differentiated epithelial cells, TGFβ is also a potent modifier of the tumor microenvironment that can serve to promote tumor development. Though clinical strategies targeting the TGFβ pathway show promise, this approach in cancer epithelial cells harboring intact tumor-suppressive TGFβ signals may exacerbate cancer cell proliferation. Therefore, it is essential to dissect the many contributions of TGFβ to cancer development prior to utilizing TGFβ inhibitors in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adrian K, Strouch MJ, Zeng Q, et al. Tgfbr1 haploinsufficiency inhibits the development of murine mutant Kras-induced pancreatic precancer. Cancer Res. 2009;69(24):9169–74.

    Article  CAS  PubMed  Google Scholar 

  • Anbazhagan R, Bornman DM, Johnston JC, et al. The S387Y mutations of the transforming growth factor-beta receptor type I gene is uncommon in metastases of breast cancer and other common types of adenocarcinoma. Cancer Res. 1999;59(14):3363–4.

    CAS  PubMed  Google Scholar 

  • Antony ML, Nair R, Sebastian P, et al. Changes in expression, and/or mutations in TGF-beta receptors (TGF-beta RI and TGF-beta RII) and Smad 4 in human ovarian tumors. J Cancer Res Clin Oncol. 2010;136(3):351–61.

    Article  CAS  PubMed  Google Scholar 

  • Arteaga CL, Hurd SD, Winnier AR, et al. Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. J Clin Invest. 1993;92(6):2569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay A, Zhu Y, Cibull ML, et al. A soluble transforming growth factor beta type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells. Cancer Res. 1999;59(19):5041–6.

    CAS  PubMed  Google Scholar 

  • Bardeesy N, Cheng KH, Berger JH, et al. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 2006;20(22):3130–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates GJ, Fox SB, Han C, et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol. 2006;24(34):5373–80.

    Article  PubMed  Google Scholar 

  • Bhola NE, Balko JM, Dugger TC, et al. TGF-beta inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Invest. 2013;123(3):1348–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas S, Guix M, Rinehart C, et al. Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J Clin Invest. 2007;117(5):1305–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138(6):2073–87. e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Bosscher K, Hill CS, Nicolas FJ. Molecular and functional consequences of Smad4 C-terminal missense mutations in colorectal tumour cells. Biochem J. 2004;379(Pt 1):209–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deschoolmeester V, Baay M, Lardon F, et al. Immune cells in colorectal cancer: prognostic relevance and role of MSI. Cancer Microenviron. 2011;4(3):377–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Forrester E, Chytil A, Bierie B, et al. Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res. 2005;65(6):2296–302.

    Article  CAS  PubMed  Google Scholar 

  • Gobert M, Treilleux I, Bendriss-Vermare N, et al. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 2009;69(5):2000–9.

    Article  CAS  PubMed  Google Scholar 

  • Gong D, Shi W, Yi SJ, et al. TGFbeta signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 2012;13:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon KJ, Dong M, Chislock EM, et al. Loss of type III transforming growth factor beta receptor expression increases motility and invasiveness associated with epithelial to mesenchymal transition during pancreatic cancer progression. Carcinogenesis. 2008;29(2):252–62.

    Article  CAS  PubMed  Google Scholar 

  • Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med. 2001;7(10):1118–22.

    Article  CAS  PubMed  Google Scholar 

  • Gorska AE, Jensen RA, Shyr Y, et al. Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammary tumor formation. Am J Pathol. 2003;163(4):1539–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goumans MJ, Lebrin F, Valdimarsdottir G. Controlling the angiogenic switch: a balance between two distinct TGF-b receptor signaling pathways. Trends Cardiovasc Med. 2003;13(7):301–7.

    Article  CAS  PubMed  Google Scholar 

  • Hahn SA, Schutte M, Hoque AT, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996;271(5247):350–3.

    Article  CAS  PubMed  Google Scholar 

  • Han G, Lu SL, Li AG, et al. Distinct mechanisms of TGF-beta1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J Clin Invest. 2005;115(7):1714–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He SM, Zhao ZW, Wang Y, et al. Reduced expression of SMAD4 in gliomas correlates with progression and survival of patients. J Exp Clin Cancer Res. 2011;30:70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ijichi H, Chytil A, Gorska AE, et al. Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev. 2006;20(22):3147–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izeradjene K, Combs C, Best M, et al. Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell. 2007;11(3):229–43.

    Article  CAS  PubMed  Google Scholar 

  • Jaffee EM, Hruban RH, Canto M, et al. Focus on pancreas cancer. Cancer Cell. 2002;2(1):25–8.

    Article  CAS  PubMed  Google Scholar 

  • Kim IY, Ahn HJ, Lang S, et al. Loss of expression of transforming growth factor-beta receptors is associated with poor prognosis in prostate cancer patients. Clin Cancer Res. 1998;4(7):1625–30.

    CAS  PubMed  Google Scholar 

  • Kim ES, Kim MS, Moon A. TGF-beta-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells. Int J Oncol. 2004;25(5):1375–82.

    CAS  PubMed  Google Scholar 

  • Kojima K, Vickers SM, Adsay NV, et al. Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia. Cancer Res. 2007;67(17):8121–30.

    Article  CAS  PubMed  Google Scholar 

  • Koyama M, Ito M, Nagai H, et al. Inactivation of both alleles of the DPC4/SMAD4 gene in advanced colorectal cancers: identification of seven novel somatic mutations in tumors from Japanese patients. Mutat Res. 1999;406(2–4):71–7.

    CAS  PubMed  Google Scholar 

  • Lebrin F, Deckers M, Bertolino P, et al. TGF-beta receptor function in the endothelium. Cardiovasc Res. 2005;65(3):599–608.

    Article  CAS  PubMed  Google Scholar 

  • Levy L, Hill CS. Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 2006;17(1–2):41–58.

    Article  CAS  PubMed  Google Scholar 

  • MacGrogan D, Pegram M, Slamon D, et al. Comparative mutational analysis of DPC4 (Smad4) in prostatic and colorectal carcinomas. Oncogene. 1997;15(9):1111–4.

    Article  CAS  PubMed  Google Scholar 

  • Maliekal TT, Antony ML, Nair A, et al. Loss of expression, and mutations of Smad 2 and Smad 4 in human cervical cancer. Oncogene. 2003;22(31):4889–97.

    Article  CAS  PubMed  Google Scholar 

  • Melisi D, Ishiyama S, Sclabas GM, et al. LY2109761, a novel transforming growth factor beta receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol Cancer Ther. 2008;7(4):829–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11(10):763–76.

    Article  CAS  PubMed  Google Scholar 

  • Miyaki M, Kuroki T. Role of Smad4 (DPC4) inactivation in human cancer. Biochem Biophys Res Commun. 2003;306(4):799–804.

    Article  CAS  PubMed  Google Scholar 

  • Moore-Smith L, Pasche B. TGFBR1 signaling and breast cancer. J Mammary Gland Biol Neoplasia. 2011;16(2):89–95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Muraoka RS, Dumont N, Ritter CA, et al. Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest. 2002;109(12):1551–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muraoka-Cook RS, Kurokawa H, Koh Y, et al. Conditional overexpression of active transforming growth factor beta1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Res. 2004;64(24):9002–11.

    Article  CAS  PubMed  Google Scholar 

  • Muraoka-Cook RS, Shin I, Yi JY, et al. Activated type I TGFbeta receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene. 2006;25(24):3408–23.

    Article  CAS  PubMed  Google Scholar 

  • Nagatake M, Takagi Y, Osada H, et al. Somatic in vivo alterations of the DPC4 gene at 18q21 in human lung cancers. Cancer Res. 1996;56(12):2718–20.

    CAS  PubMed  Google Scholar 

  • Oettle H, Hilbig A, Seufferlein T, et al. Interim results of the phase I/II study of trabedersen (AP 12009) in patients with pancreatic carcinoma, malignant melanoma, or colorectal carcinoma. J Clin Oncol. 2009;(suppl; abstr 4619)

    Google Scholar 

  • Peinado H, Ballestar E, Esteller M, et al. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol. 2004;24(1):306–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Principe DR, Doll JA, Bauer J, et al. TGF-beta: Duality of Function Between Tumor Prevention and Carcinogenesis. J Natl Cancer Inst. 2014;106(2):djt369.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowland-Goldsmith MA, Maruyama H, Kusama T, et al. Soluble type II transforming growth factor-beta (TGF-beta) receptor inhibits TGF-beta signaling in COLO-357 pancreatic cancer cells in vitro and attenuates tumor formation. Clin Cancer Res. 2001;7(9):2931–40.

    CAS  PubMed  Google Scholar 

  • Schlingensiepen K-H, Bischof A, Egger T, et al. The TGF-beta1 antisense oligonucleotide AP 11014 for the treatment of non-small cell lung, colorectal and prostate cancer: preclinical studies. J Clin Oncol. 2004;22:3132.

    Google Scholar 

  • Schlingensiepen KH, Schlingensiepen R, Steinbrecher A, et al. Targeted tumor therapy with the TGF-beta 2 antisense compound AP 12009. Cytokine Growth Factor Rev. 2006;17(1–2):129–39.

    Article  CAS  PubMed  Google Scholar 

  • Schutte M, Hruban RH, Hedrick L, et al. DPC4 gene in various tumor types. Cancer Res. 1996;56(11):2527–30.

    CAS  PubMed  Google Scholar 

  • Takagi Y, Kohmura H, Futamura M, et al. Somatic alterations of the DPC4 gene in human colorectal cancers in vivo. Gastroenterology. 1996;111(5):1369–72.

    Article  CAS  PubMed  Google Scholar 

  • Takakura S, Okamoto A, Saito M, et al. Allelic imbalance in chromosome band 18q21 and SMAD4 mutations in ovarian cancers. Genes Chromosomes Cancer. 1999;24(3):264–71.

    Article  CAS  PubMed  Google Scholar 

  • Tang Q, Boden EK, Henriksen KJ, et al. Distinct roles of CTLA-4 and TGF-beta in CD4 + CD25+ regulatory T cell function. Eur J Immunol. 2004;34(11):2996–3005.

    Article  CAS  PubMed  Google Scholar 

  • Thomas DA, Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 2005;8(5):369–80.

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga H, Lee DH, Kim IY, et al. Decreased expression of transforming growth factor beta receptor type I is associated with poor prognosis in bladder transitional cell carcinoma patients. Clin Cancer Res. 1999;5(9):2520–5.

    CAS  PubMed  Google Scholar 

  • Vogelmann R, Nguyen-Tat MD, Giehl K, et al. TGFbeta-induced downregulation of E-cadherin-based cell-cell adhesion depends on PI3-kinase and PTEN. J Cell Sci. 2005;118(Pt 20):4901–12.

    Article  CAS  PubMed  Google Scholar 

  • Wang LH, Kim SH, Lee JH, et al. Inactivation of SMAD4 tumor suppressor gene during gastric carcinoma progression. Clin Cancer Res. 2007;13(1):102–10.

    Article  PubMed  Google Scholar 

  • Wang L, Wen W, Yuan J, et al. Immunotherapy for human renal cell carcinoma by adoptive transfer of autologous transforming growth factor beta-insensitive CD8+ T cells. Clin Cancer Res. 2010;16(1):164–73.

    Article  CAS  PubMed  Google Scholar 

  • Wendt MK, Tian M, Schiemann WP. Deconstructing the mechanisms and consequences of TGF-beta-induced EMT during cancer progression. Cell Tissue Res. 2012;347(1):85–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakicier MC, Irmak MB, Romano A, et al. Smad2 and Smad4 gene mutations in hepatocellular carcinoma. Oncogene. 1999;18(34):4879–83.

    Article  CAS  PubMed  Google Scholar 

  • Yamada N, Kato M, Yamashita H, et al. Enhanced expression of transforming growth factor-beta and its type-I and type-II receptors in human glioblastoma. Int J Cancer. 1995;62(4):386–92.

    Article  CAS  PubMed  Google Scholar 

  • Yokota T, Matsumoto S, Yoshimoto M, et al. Mapping of a breast cancer tumor suppressor gene locus to a 4-cM interval on chromosome 18q21. Jpn J Cancer Res. 1997;88(10):959–64.

    Article  CAS  PubMed  Google Scholar 

  • Zavadil J, Cermak L, Soto-Nieves N, et al. Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 2004;23(5):1155–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Yang X, Pins M, et al. Adoptive transfer of tumor-reactive transforming growth factor-beta-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer. Cancer Res. 2005;65(5):1761–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Yang XJ, Kundu SD, et al. Blockade of transforming growth factor-{beta} signaling in tumor-reactive CD8(+) T cells activates the antitumor immune response cycle. Mol Cancer Ther. 2006;5(7):1733–43.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Helfand BT, Jang TL, et al. Nuclear factor-kappaB-mediated transforming growth factor-beta-induced expression of vimentin is an independent predictor of biochemical recurrence after radical prostatectomy. Clin Cancer Res. 2009;15(10):3557–67.

    Article  CAS  PubMed  Google Scholar 

  • Zheng SG, Wang J, Wang P, et al. IL-2 is essential for TGF-beta to convert naive CD4 + CD25- cells to CD25 + Foxp3+ regulatory T cells and for expansion of these cells. J Immunol. 2007;178(4):2018–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Grippo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Principe, D.R., Mangan, R.J., Grippo, P.J. (2014). Transforming Growth Factor β. In: Marshall, J. (eds) Cancer Therapeutic Targets. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6613-0_137-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6613-0_137-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6613-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics