Skip to main content

TGF-ß Signaling Pathway and Colorectal Cancer

  • Chapter
  • First Online:
Molecular Pathogenesis of Colorectal Cancer
  • 1447 Accesses

Abstract

The Transforming Growth Factor Beta (TGF-ß) signaling pathway is one of the most commonly disrupted pathways in colorectal cancer. Its deregulation appears to mediate cancer formation through a variety of mechanisms. TGF-ß is the canonical member of a family of secreted proteins that include the TGF-ß isoforms, TGF-ß1, TGF-ß2, and TGF-ß3; activins; Growth and Differentiation Factors (GDFs); bone morphogenetic proteins (BMP); inhibin, nodal, and anti-Mullerian hormone. These ligands all mediate biological activities in cells through binding to cell surface receptor complexes that are composed of type I and type II heteromeric receptors. In the colon, TGF-ß can inhibit cell proliferation, induce apoptosis, and induce terminal differentiation, which suggests this pathway has tumor suppressor activities in colorectal cancers. This role of a tumor suppressor pathway is supported by the identification of inactivating mutations and epigenetic alterations in many TGF-ß pathway genes, including TGFBR2, SMAD4, SMAD2, BMPR2A, and ACVR2. Interestingly, some studies have suggested that in certain contexts TGF-ß may promote the invasive or metastatic behavior of established cancer cells suggesting TGF-ß has a paradoxical role in primary human cancers that appears to depend on the stage of cancer. This chapter will focus on the tumor suppressor activity of the TGF-ß signaling pathway in colorectal cancer and will highlight mechanisms through which TGF-ß signaling mediates its antitumor effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MMP:

Matrix metalloprotease 2

MMP9:

Matrix metalloprotease 9

TSP1:

Thrombospondin 1

References

  • Abdollah S, Macias-Silva M, Tsukazaki T, Hayashi H, Attisano L, Wrana JL (1997) TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem 272(44):27678–27685

    Article  PubMed  CAS  Google Scholar 

  • Akhurst RJ, Derynck R (2001) TGF-beta signaling in cancer—a double-edged sword. Trends Cell Biol 11(11):S44–S51

    Article  PubMed  CAS  Google Scholar 

  • Alexander JM, Bikkal HA, Zervas NT, Laws ER Jr, Klibanski A (1996) Tumor-specific expression and alternate splicing of messenger ribonucleic acid encoding activin/transforming growth factor-beta receptors in human pituitary adenomas. J Clin Endocrinol Metab 81(2):783–790

    Article  PubMed  CAS  Google Scholar 

  • Alexandrow MG, Moses HL (1995) Transforming growth factor beta and cell cycle regulation. Cancer Res 55(7):1452–1457

    PubMed  CAS  Google Scholar 

  • Alhopuro P, Alazzouzi H, Sammalkorpi H, Davalos V, Salovaara R, Hemminki A et al (2005) SMAD4 levels and response to 5-fluorouracil in colorectal cancer. Clin Cancer Res 11(17):6311–6316

    Article  PubMed  CAS  Google Scholar 

  • Anumanthan G, Halder SK, Osada H, Takahashi T, Massion PP, Carbone DP et al (2005) Restoration of TGF-beta signalling reduces tumorigenicity in human lung cancer cells. Br J Cancer 93(10):1157–1167

    Article  PubMed  CAS  Google Scholar 

  • Anzano MA, Roberts AB, Meyers CA, Komoriya A, Lamb LC, Smith JM et al (1982) Synergistic interaction of two classes of transforming growth factors from murine sarcoma cells. Cancer Res 42(11):4776–4778

    PubMed  CAS  Google Scholar 

  • Atfi A, Buisine M, Mazars A, Gespach C (1997) Induction of apoptosis by DPC4, a transcriptional factor regulated by transforming growth factor-beta through stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling pathway. J Biol Chem 272(40):24731–24734

    Article  PubMed  CAS  Google Scholar 

  • Avery A, Paraskeva C, Hall P, Flanders KC, Sporn M, Moorghen M (1993) TGF-ß expression in the human colon: differential immunostaining along crypt epithelium. Br J Cancer 68:137–139

    Article  PubMed  CAS  Google Scholar 

  • Azuma H, Ehata S, Miyazaki H, Watabe T, Maruyama O, Imamura T et al (2005) Effect of Smad7 expression on metastasis of mouse mammary carcinoma JygMC(a) cells. J Natl Cancer Inst 97(23):1734–1746

    Article  PubMed  CAS  Google Scholar 

  • Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor beta -mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275(47):36803–36810

    Article  PubMed  CAS  Google Scholar 

  • Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL (2002) p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci 115(Pt 15):3193–3206

    PubMed  CAS  Google Scholar 

  • Barnard JA, Warwick GJ, Gold LI (1993) Localization of transforming growth factor ß isoforms in the normal murine small intestine and colon. Gastroenterology 105:67–73

    PubMed  CAS  Google Scholar 

  • Beck SE, Jung BH, Del Rosario E, Gomez J, Carethers JM (2007) BMP-induced growth suppression in colon cancer cells is mediated by p21WAF1 stabilization and modulated by RAS/ERK. Cell Signal 19(7):1465–1472

    Article  PubMed  CAS  Google Scholar 

  • Bellam N, Pasche B (2010) Tgf-beta signaling alterations and colon cancer. Cancer Treat Res 155:85–103

    Article  PubMed  CAS  Google Scholar 

  • Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6(7):506–520

    Article  PubMed  CAS  Google Scholar 

  • Biswas S, Chytil A, Washington K, Romero-Gallo J, Gorska AE, Wirth PS et al (2004) Transforming growth factor beta receptor type II inactivation promotes the establishment and progression of colon cancer. Cancer Res 64(14):4687–4692

    Article  PubMed  CAS  Google Scholar 

  • Blahna MT, Hata A (2012) Smad-mediated regulation of microRNA biosynthesis. FEBS Lett 586(14):1906–1912

    Article  PubMed  CAS  Google Scholar 

  • Boulay JL, Mild G, Lowy A, Reuter J, Lagrange M, Terracciano L et al (2002) SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer. Br J Cancer 87(6):630–634

    Article  PubMed  CAS  Google Scholar 

  • Brattain MG, Ko Y, Banerji SS, Wu G, Willson JK (1996) Defects of TGF-beta receptor signaling in mammary cell tumorigenesis. J Mammary Gland Biol Neoplasia 1(4):365–372

    Article  PubMed  CAS  Google Scholar 

  • Bravo SB, Pampin S, Cameselle-Teijeiro J, Carneiro C, Dominguez F, Barreiro F et al (2003) TGF-beta-induced apoptosis in human thyrocytes is mediated by p27kip1 reduction and is overridden in neoplastic thyrocytes by NF-kappaB activation. Oncogene 22(49):7819–7830

    Article  PubMed  CAS  Google Scholar 

  • Brown TL, Patil S, Cianci CD, Morrow JS, Howe PH (1999) Transforming growth factor beta induces caspase 3-independent cleavage of alphaII-spectrin (alpha-fodrin) coincident with apoptosis. J Biol Chem 274(33):23256–23262

    Article  PubMed  CAS  Google Scholar 

  • Brown KA, Roberts RL, Arteaga CL, Law BK (2004) Transforming growth factor-beta induces Cdk2 relocalization to the cytoplasm coincident with dephosphorylation of retinoblastoma tumor suppressor protein. Breast Cancer Res 6(2):R130–R139

    Article  PubMed  CAS  Google Scholar 

  • Burdette JE, Jeruss JS, Kurley SJ, Lee EJ, Woodruff TK (2005) Activin a mediates growth inhibition and cell cycle arrest through Smads in human breast cancer cells. Cancer Res 65(17):7968–7975

    PubMed  CAS  Google Scholar 

  • Carethers JM, Hawn MT, Greenson JK, Hitchcock CL, Boland CR (1998) Prognostic significance of allelic lost at chromosome 18q21 for stage II colorectal cancer. Gastroenterology 114(6):1188–1195

    Article  PubMed  CAS  Google Scholar 

  • Chen YG, Hata A, Lo RS, Wotton D, Shi Y, Pavletich N et al (1998a) Determinants of specificity in TGF-beta signal transduction. Genes Dev 12(14):2144–2152

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Carter D, Garrigue-Antar L, Reiss M (1998b) Transforming growth factor ß type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res 58:4805–4810

    PubMed  CAS  Google Scholar 

  • Chen RH, Chang MC, Su YH, Tsai YT, Kuo ML (1999) Interleukin-6 inhibits transforming growth factor-beta-induced apoptosis through the phosphatidylinositol 3-kinase/Akt and signal transducers and activators of transcription 3 pathways. J Biol Chem 274(33):23013–23019

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Yan W, Wells RG, Rimm DL, McNiff J, Leffell D et al (2001) Novel inactivating mutations of transforming growth factor-beta type I receptor gene in head-and-neck cancer metastases. Int J Cancer 93(5):653–661

    Article  PubMed  CAS  Google Scholar 

  • Chen YG, Lui HM, Lin SL, Lee JM, Ying SY (2002) Regulation of cell proliferation, apoptosis, and carcinogenesis by activin. Exp Biol Med (Maywood) 227(2):75–87

    CAS  Google Scholar 

  • Chen T, Jackson C, Costello B, Singer N, Colligan B, Douglass L et al (2004) An intronic variant of the TGFBR1 gene is associated with carcinomas of the kidney and bladder. Int J Cancer 112(3):420–425

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Jackson CR, Link A, Markey MP, Colligan BM, Douglass LE et al (2006) Int7G24A variant of transforming growth factor-beta receptor type I is associated with invasive breast cancer. Clin Cancer Res 12(2):392–397

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury S, Howell GM, Rajput A, Teggart CA, Brattain LE, Weber HR et al (2011) Identification of a novel TGFbeta/PKA signaling transduceome in mediating control of cell survival and metastasis in colon cancer. PLoS One 6(5):e19335

    Article  PubMed  CAS  Google Scholar 

  • Chu TY, Lai JS, Shen CY, Liu HS, Chao CF (1999) Frequent aberration of the transforming growth factor-beta receptor II gene in cell lines but no apparent mutation in pre-invasive and invasive carcinomas of the uterine cervix. Int J Cancer 80(4):506–510

    Article  PubMed  CAS  Google Scholar 

  • Conery AR, Cao Y, Thompson EA, Townsend CM Jr, Ko TC, Luo K (2004) Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat Cell Biol 6(4):366–372

    Article  PubMed  CAS  Google Scholar 

  • Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S (2003) Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. Cell 113(3):301–314

    Article  PubMed  CAS  Google Scholar 

  • Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SM, Lawler J, Hynes RO et al (1998) Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell 93(7):1159–1170

    Article  PubMed  CAS  Google Scholar 

  • Cui W, Fowlis DJ, Bryson S, Duffie E, Ireland H, Balmain A et al (1996) TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86(4):531–542

    Article  PubMed  CAS  Google Scholar 

  • Daley D, Morgan W, Lewis S, Willis J, Elston RC, Markowitz SD et al (2007) Is TGFBR1*6A a susceptibility allele for nonsyndromic familial colorectal neoplasia? Cancer Epidemiol Biomarkers Prev 16(5):892–894

    Article  PubMed  CAS  Google Scholar 

  • Datto M, Li Y, Panus J, Howe D, Xiong Y, Wang X-F (1995) Transforming growth factor ß induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 92:5545–5549

    Article  PubMed  CAS  Google Scholar 

  • Datto MB, Frederick JP, Pan L, Borton AJ, Zhuang Y, Wang XF (1999) Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction. Mol Cell Biol 19(4):2495–2504

    PubMed  CAS  Google Scholar 

  • Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A (2010) Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 39(3):373–384

    Article  PubMed  CAS  Google Scholar 

  • de Caestecker M (2004) The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev 15(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Deacu E, Mori Y, Sato F, Yin J, Olaru A, Sterian A et al (2004) Activin type II receptor restoration in ACVR2-deficient colon cancer cells induces transforming growth factor-beta response pathway genes. Cancer Res 64(21):7690–7696

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Cao Y, Liu Y, Li F, Sambandam K, Rajaraman S et al (2013) Overexpression of Evi-1 oncoprotein represses TGF-beta signaling in colorectal cancer. Mol Carcinog 52(4):255–264

    Article  PubMed  CAS  Google Scholar 

  • Derynck R, Akhurst RJ, Balmain A (2001) TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29(2):117–129

    Article  PubMed  CAS  Google Scholar 

  • Dews M, Fox JL, Hultine S, Sundaram P, Wang W, Liu YY et al (2010) The myc-miR-17 92 axis blunts TGF{beta} signaling and production of multiple TGF{beta}-dependent antiangiogenic factors. Cancer Res 70(20):8233–8246

    Article  PubMed  CAS  Google Scholar 

  • Dowdy SC, Mariani A, Reinholz MM, Keeney GL, Spelsberg TC, Podratz KC et al (2005) Overexpression of the TGF-beta antagonist Smad7 in endometrial cancer. Gynecol Oncol 96(2):368–373

    Article  PubMed  CAS  Google Scholar 

  • Dupont S, Zacchigna L, Adorno M, Soligo S, Volpin D, Piccolo S et al (2004) Convergence of p53 and TGF-beta signaling networks. Cancer Lett 213(2):129–138

    Article  PubMed  CAS  Google Scholar 

  • Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M et al (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38(12):1378–1385

    Article  PubMed  CAS  Google Scholar 

  • Elliott RL, Blobe GC (2005) Role of transforming growth factor beta in human cancer. J Clin Oncol 23(9):2078–2093

    Article  PubMed  CAS  Google Scholar 

  • Engle SJ, Hoying JB, Boivin GP, Ormsby I, Gartside PS, Doetschman T (1999) Transforming growth factor beta1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res 59(14):3379–3386

    PubMed  CAS  Google Scholar 

  • Engle SJ, Ormsby I, Pawlowski S, Boivin GP, Croft J, Balish E et al (2002) Elimination of colon cancer in germ-free transforming growth factor beta 1-deficient mice. Cancer Res 62(22):6362–6366

    PubMed  CAS  Google Scholar 

  • Eppert K, Scherer S, Ozcelik H, Pirone R, Hoodless P, Kim H et al (1996) Madr2 maps to 18q21 and encodes a TGF-ß regulated Mad-related protein that is functionally mutated in colorectal carcinoma. Cell 86:543–552

    Article  PubMed  CAS  Google Scholar 

  • Eskinazi R, Resibois A, Svoboda M, Peny MO, Adler M, Robberecht P et al (1998) Expression of transforming growth factor beta receptors in normal human colon and sporadic adenocarcinomas. Gastroenterology 114(6):1211–1220

    Article  PubMed  CAS  Google Scholar 

  • Ewan KB, Henshall-Powell RL, Ravani SA, Pajares MJ, Arteaga C, Warters R et al (2002) Transforming growth factor-beta1 mediates cellular response to DNA damage in situ. Cancer Res 62(20):5627–5631

    PubMed  CAS  Google Scholar 

  • Ewen ME, Sluss HK, Whitehouse LL, Livingston DM (1993) TGF beta inhibition of Cdk4 synthesis is linked to cell cycle arrest. Cell 74(6):1009–1020

    Article  PubMed  CAS  Google Scholar 

  • Factor VM, Kao CY, Santoni-Rugiu E, Woitach JT, Jensen MR, Thorgeirsson SS (1997) Constitutive expression of mature transforming growth factor beta1 in the liver accelerates hepatocarcinogenesis in transgenic mice. Cancer Res 57(11):2089–2095

    PubMed  CAS  Google Scholar 

  • Fava RA, Casey TT, Wilcox J, Pelton RW, Moses HL, Nanney LB (1990) Synthesis of transforming growth factor-beta 1 by megakaryocytes and its localization to megakaryocyte and platelet alpha-granules. Blood 76(10):1946–1955

    PubMed  CAS  Google Scholar 

  • Fink S, Swinler S, Lutterbaugh J, Massague J, Thiagalingam S, Kinzler K et al (2001) Transforming growth factor-beta induced growth inhibition in a Smad4 mutant colon adenoma cell line. Cancer Res 61:256–260

    PubMed  CAS  Google Scholar 

  • Fink SP, Mikkola D, Willson JK, Markowitz S (2003) TGF-beta-induced nuclear localization of Smad2 and Smad3 in Smad4 null cancer cell lines. Oncogene 22(9):1317–1323

    Article  PubMed  CAS  Google Scholar 

  • Freathy C, Brown DG, Roberts RA, Cain K (2000) Transforming growth factor-beta(1) induces apoptosis in rat FaO hepatoma cells via cytochrome c release and oligomerization of Apaf-1 to form a approximately 700-kd apoptosome caspase-processing complex. Hepatology 32(4 Pt 1):750–760

    Article  PubMed  CAS  Google Scholar 

  • Freeman TJ, Smith JJ, Chen X, Washington MK, Roland JT, Means AL, et al (2012) Smad4-mediated signaling inhibits intestinal neoplasia by inhibiting expression of beta-catenin. Gastroenterology 142(3):562–571. e2

    Google Scholar 

  • Friedl W, Kruse R, Uhlhaas S, Stolte M, Schartmann B, Keller KM et al (1999) Frequent 4-bp deletion in exon 9 of the SMAD4/MADH4 gene in familial juvenile polyposis patients. Genes Chromosomes Cancer 25(4):403–406

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto K, Sheng H, Shao J, Beauchamp RD (2001) Transforming growth factor-beta1 promotes invasiveness after cellular transformation with activated Ras in intestinal epithelial cells. Exp Cell Res 266(2):239–249

    Article  PubMed  CAS  Google Scholar 

  • Geng Y, Weinberg RA (1993) Transforming growth factor beta effects on expression of G1 cyclins and cyclin-dependent protein kinases. Proc Natl Acad Sci USA 90(21):10315–10319

    Article  PubMed  CAS  Google Scholar 

  • Glick A, Popescu N, Alexander V, Ueno H, Bottinger E, Yuspa SH (1999) Defects in transforming growth factor-beta signaling cooperate with a Ras oncogene to cause rapid aneuploidy and malignant transformation of mouse keratinocytes. Proc Natl Acad Sci USA 96(26):14949–14954

    Article  PubMed  CAS  Google Scholar 

  • Goggins M, Shekher M, Turnacioglu K, Yeo CJ, Hruban RH, Kern SE (1998) Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res 58(23):5329–5332

    PubMed  CAS  Google Scholar 

  • Gong J, Ammanamanchi S, Ko TC, Brattain MG (2003) Transforming growth factor beta1 increases the stability of p21/WAF1/CIP1 protein and inhibits CDK2 kinase activity in human colon carcinoma FET cells. Cancer Res 63(12):3340–3346

    PubMed  CAS  Google Scholar 

  • Grady WM (2004) Genomic instability and colon cancer. Cancer Metastasis Rev 23(1–2):11–27

    Article  PubMed  CAS  Google Scholar 

  • Grady WM, Markowitz SD (2008) TGF-ß signaling pathway and tumor suppression. In: Derynck R, Miyazono K (eds) The TGF-ß family, 1st edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 889–938

    Google Scholar 

  • Grady W, Rajput A, Myeroff L, Liu D, Willis J, Kwon K et al (1998) Mutation of the type II TGF-ß receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Res 58:3101–3104

    PubMed  CAS  Google Scholar 

  • Grady W, Myeroff L, Swinler S, Rajput A, Thiagalingam S, Lutterbaugh J et al (1999) Mutational inactivation of transforming growth factor ß receptor type II in microsatellite stable colon cancers. Cancer Res 59:320–324

    PubMed  CAS  Google Scholar 

  • Grady WM, Willis JE, Trobridge P, Romero-Gallo J, Munoz N, Olechnowicz J et al (2006) Proliferation and Cdk4 expression in microsatellite unstable colon cancers with TGFBR2 mutations. Int J Cancer 118(3):600–608

    Article  PubMed  CAS  Google Scholar 

  • Grau AM, Zhang L, Wang W, Ruan S, Evans DB, Abbruzzese JL et al (1997) Induction of p21waf1 expression and growth inhibition by transforming growth factor beta involve the tumor suppressor gene DPC4 in human pancreatic adenocarcinoma cells. Cancer Res 57(18):3929–3934

    PubMed  CAS  Google Scholar 

  • Grijelmo C, Rodrigue C, Svrcek M, Bruyneel E, Hendrix A, de Wever O et al (2007) Proinvasive activity of BMP-7 through SMAD4/src-independent and ERK/Rac/JNK-dependent signaling pathways in colon cancer cells. Cell Signal 19(8):1722–1732

    Article  PubMed  CAS  Google Scholar 

  • Guda K, Natale L, Lutterbaugh J, Wiesner GL, Lewis S, Tanner SM et al (2009) Infrequent detection of germline allele-specific expression of TGFBR1 in lymphoblasts and tissues of colon cancer patients. Cancer Res 69(12):4959–4961

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Kyprianou N (1999) Restoration of transforming growth factor beta signaling pathway in human prostate cancer cells suppresses tumorigenicity via induction of caspase-1-mediated apoptosis. Cancer Res 59(6):1366–1371

    PubMed  CAS  Google Scholar 

  • Hahm KB, Lee KM, Kim YB, Hong WS, Lee WH, Han SU et al (2002) Conditional loss of TGF-beta signalling leads to increased susceptibility to gastrointestinal carcinogenesis in mice. Aliment Pharmacol Ther 16(Suppl 2):115–127

    Article  PubMed  CAS  Google Scholar 

  • Hahn WC (2003) Role of telomeres and telomerase in the pathogenesis of human cancer. J Clin Oncol 21(10):2034–2043

    Article  PubMed  CAS  Google Scholar 

  • Hahn SA, Schutte M, Hoque ATM, Moskaluk C, da Costa L, Rozenblum E et al (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271(5247):350–353

    Article  PubMed  CAS  Google Scholar 

  • Halder SK, Beauchamp RD, Datta PK (2005) Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis. Exp Cell Res 307(1):231–246

    Article  PubMed  CAS  Google Scholar 

  • Hamamoto T, Beppu H, Okada H, Kawabata M, Kitamura T, Miyazono K et al (2002) Compound disruption of smad2 accelerates malignant progression of intestinal tumors in apc knockout mice. Cancer Res 62(20):5955–5961

    PubMed  CAS  Google Scholar 

  • Han SU, Kim HT, Seong do H, Kim YS, Park YS, Bang YJ et al (2004) Loss of the Smad3 expression increases susceptibility to tumorigenicity in human gastric cancer. Oncogene 23(7):1333–1341

    Article  PubMed  CAS  Google Scholar 

  • Han G, Lu SL, Li AG, He W, Corless CL, Kulesz-Martin M et al (2005) Distinct mechanisms of TGF-beta1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J Clin Invest 115(7):1714–1723

    Article  PubMed  CAS  Google Scholar 

  • Hannon G, Beach D (1994) p15INK4B is a potential effector of TGF-ß-induced cell cycle arrest. Nature 371:257–261

    Article  PubMed  CAS  Google Scholar 

  • Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, Oshima M et al (1999) Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J 18(21):5931–5942

    Article  PubMed  CAS  Google Scholar 

  • Haramis AP, Begthel H, van den Born M, van Es J, Jonkheer S, Offerhaus GJ et al (2004) De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303(5664):1684–1686

    Article  PubMed  CAS  Google Scholar 

  • He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH et al (2004) BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 36(10):1117–1121

    Article  PubMed  CAS  Google Scholar 

  • Hempen PM, Zhang L, Bansal RK, Iacobuzio-Donahue CA, Murphy KM, Maitra A et al (2003) Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers. Cancer Res 63:994–999

    PubMed  CAS  Google Scholar 

  • Hofmann TG, Stollberg N, Schmitz ML, Will H (2003) HIPK2 regulates transforming growth factor-beta-induced c-Jun NH(2)-terminal kinase activation and apoptosis in human hepatoma cells. Cancer Res 63(23):8271–8277

    PubMed  CAS  Google Scholar 

  • Hohenstein P, Molenaar L, Elsinga J, Morreau H, van der Klift H, Struijk A et al (2003) Serrated adenomas and mixed polyposis caused by a splice acceptor deletion in the mouse Smad4 gene. Genes Chromosomes Cancer 36(3):273–282

    Article  PubMed  CAS  Google Scholar 

  • Hoosein N, McKnight M, Levine A, Mulder K, Childress K, Brattain D et al (1989) Differential sensitivity of subclasses of human colon carcinoma cell lines to the growth inhibitory effects of transforming growth factor-ß1. Exp Cell Res 181:442–453

    Article  PubMed  CAS  Google Scholar 

  • Horowitz JC, Lee DY, Waghray M, Keshamouni VG, Thomas PE, Zhang H et al (2004) Activation of the pro-survival phosphatidylinositol 3-kinase/AKT pathway by transforming growth factor-beta1 in mesenchymal cells is mediated by p38 MAPK-dependent induction of an autocrine growth factor. J Biol Chem 279(2):1359–1367

    Article  PubMed  CAS  Google Scholar 

  • Howe PH, Draetta G, Leof EB (1991) Transforming growth factor beta 1 inhibition of p34cdc2 phosphorylation and histone H1 kinase activity is associated with G1/S-phase growth arrest. Mol Cell Biol 11(3):1185–1194

    PubMed  CAS  Google Scholar 

  • Howe JR, Roth S, Ringold JC, Summers RW, Jarvinen HJ, Sistonen P et al (1998) Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280(5366):1086–1088

    Article  PubMed  CAS  Google Scholar 

  • Howe JR, Bair JL, Sayed MG, Anderson ME, Mitros FA, Petersen GM et al (2001) Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet 28(2):184–187

    Article  PubMed  CAS  Google Scholar 

  • Howe JR, Shellnut J, Wagner B, Ringold JC, Sayed MG, Ahmed AF et al (2002) Common deletion of SMAD4 in juvenile polyposis is a mutational hotspot. Am J Hum Genet 70(5):1357–1362

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Zuckerman KS (2001) Transforming growth factor: signal transduction pathways, cell cycle mediation, and effects on hematopoiesis. J Hematother Stem Cell Res 10(1):67–74

    Article  PubMed  CAS  Google Scholar 

  • Iavarone A, Massague J (1997) Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-beta in cells lacking the CDK inhibitor p15. Nature 387(6631):417–422

    Article  PubMed  CAS  Google Scholar 

  • Jang CW, Chen CH, Chen CC, Chen JY, Su YH, Chen RH (2002) TGF-beta induces apoptosis through Smad-mediated expression of DAP- kinase. Nat Cell Biol 4(1):51–58

    Article  PubMed  CAS  Google Scholar 

  • Javelaud D, Delmas V, Moller M, Sextius P, Andre J, Menashi S et al (2005) Stable overexpression of Smad7 in human melanoma cells inhibits their tumorigenicity in vitro and in vivo. Oncogene 24(51):7624–7629

    Article  PubMed  CAS  Google Scholar 

  • Jen J, Kim H, Piantadosi S, Liu ZF, Levitt RC, Sistonen P et al (1994) Allelic loss of chromosome 18q and prognosis in colorectal cancer. N Engl J Med 331(4):213–221

    Article  PubMed  CAS  Google Scholar 

  • Kaklamani VG, Hou N, Bian Y, Reich J, Offit K, Michel LS et al (2003) TGFBR1*6A and cancer risk: a meta-analysis of seven case-control studies. J Clin Oncol 21(17):3236–3243

    Article  PubMed  CAS  Google Scholar 

  • Kanamoto T, Hellman U, Heldin CH, Souchelnytskyi S (2002) Functional proteomics of transforming growth factor-beta1-stimulated Mv1Lu epithelial cells: Rad51 as a target of TGFbeta1-dependent regulation of DNA repair. EMBO J 21(5):1219–1230

    Article  PubMed  CAS  Google Scholar 

  • Kanzaki T, Olofsson A, Moren A, Wernstedt C, Hellman U, Miyazono K et al (1990) TGF-beta 1 binding protein: a component of the large latent complex of TGF-beta 1 with multiple repeat sequences. Cell 61(6):1051–1061

    Article  PubMed  CAS  Google Scholar 

  • Katakura Y, Nakata E, Miura T, Shirahata S (1999) Transforming growth factor beta triggers two independent-senescence programs in cancer cells. Biochem Biophys Res Commun 255(1):110–115

    Article  PubMed  CAS  Google Scholar 

  • Kawabata M, Imamura T, Miyazono K (1998) Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev 9(1):49–61

    Article  PubMed  CAS  Google Scholar 

  • Keeton MR, Curriden SA, van Zonneveld AJ, Loskutoff DJ (1991) Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta. J Biol Chem 266(34):23048–23052

    PubMed  CAS  Google Scholar 

  • Kim SJ, Im YH, Markowitz SD, Bang YJ (2000) Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. Cytokine Growth Factor Rev 11(1–2):159–168

    Article  PubMed  CAS  Google Scholar 

  • Kleeff J, Ishiwata T, Maruyama H, Friess H, Truong P, Buchler MW et al (1999) The TGF-beta signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer. Oncogene 18(39):5363–5372

    Article  PubMed  CAS  Google Scholar 

  • Knaus P, Lindemann D, DeCoteau J, Perlman R, Yankelev H, Hille M et al (1996) A dominant inhibitory mutant of the type II transforming growth factor ß receptor in the malignant progression of a cutaneous T-cell lymphoma. Mol Cell Biol 16:3480–3489

    PubMed  CAS  Google Scholar 

  • Knobloch TJ, Lynch MA, Song H, DeGroff VL, Casto BC, Adams EM et al (2001) Analysis of TGF-beta type I receptor for mutations and polymorphisms in head and neck cancers. Mutat Res 479(1–2):131–139

    PubMed  CAS  Google Scholar 

  • Korchynskyi O, Landstrom M, Stoika R, Funa K, Heldin CH, ten Dijke P et al (1999) Expression of Smad proteins in human colorectal cancer. Int J Cancer 82(2):197–202

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar M, Liu F, Hata A, Doody J, Massague J (1997) The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev 11(8):984–995

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar M, Doody J, Timokhina I, Massague J (1999) A mechanism of repression of TGFß/Smad signaling in oncogenic Ras. Genes Dev 13:804–816

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T, Chiba S et al (1998) The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature 394(6688):92–96

    Article  PubMed  CAS  Google Scholar 

  • Laurent-Puig P, Olschwang S, Delattre O, Remvikos Y, Asselain B, Melot T et al (1992) Survival and acquired genetic alterations in colorectal cancer. Gastroenterology 102(4 Pt 1):1136–1141

    PubMed  CAS  Google Scholar 

  • Lawrance AK, Deng L, Brody LC, Finnell RH, Shane B, Rozen R (2007) Genetic and nutritional deficiencies in folate metabolism influence tumorigenicity in Apcmin/+ mice. J Nutr Biochem 18(5):305–312

    Article  PubMed  CAS  Google Scholar 

  • Li AG, Lu SL, Han G, Hoot KE, Wang XJ (2006) Role of TGFbeta in skin inflammation and carcinogenesis. Mol Carcinog 45(6):389–396

    Article  PubMed  CAS  Google Scholar 

  • Lin SY, Elledge SJ (2003) Multiple tumor suppressor pathways negatively regulate telomerase. Cell 113(7):881–889

    Article  PubMed  CAS  Google Scholar 

  • Luo K, Stroschein SL, Wang W, Chen D, Martens E, Zhou S et al (1999) The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev 13(17):2196–2206

    Article  PubMed  CAS  Google Scholar 

  • Maggio-Price L, Treuting P, Zeng W, Tsang M, Bielefeldt-Ohmann H, Iritani BM (2006) Helicobacter infection is required for inflammation and colon cancer in Smad3-deficient mice. Cancer Res 66(2):828–838

    Article  PubMed  CAS  Google Scholar 

  • Markowitz S, Roberts A (1996) Tumor supressor activity of the TGF-ß pathway in human cancers. Cytokine Growth Factor Rev 7:93–102

    Article  PubMed  CAS  Google Scholar 

  • Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J et al (1995) Inactivation of the type II TGF-ß receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Lopez E, Abad A, Font A, Monzo M, Ojanguren I, Pifarre A et al (1998) Allelic loss on chromosome 18q as a prognostic marker in stage II colorectal cancer. Gastroenterology 114(6):1180–1187

    Article  PubMed  CAS  Google Scholar 

  • Massague J (1996) TGF-ß signaling: receptors, transducers, and mad proteins. Cell 85:947–950

    Article  PubMed  CAS  Google Scholar 

  • Matzuk MM, Kumar TR, Shou W, Coerver KA, Lau AL, Behringer RR et al (1996) Transgenic models to study the roles of inhibins and activins in reproduction, oncogenesis, and development. Recent Prog Horm Res 51:123–154, discussion 55–7

    PubMed  CAS  Google Scholar 

  • Mishra L, Shetty K, Tang Y, Stuart A, Byers SW (2005) The role of TGF-beta and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene 24(37):5775–5789

    Article  PubMed  CAS  Google Scholar 

  • Mithani SK, Balch GC, Shiou SR, Whitehead RH, Datta PK, Beauchamp RD (2004) Smad3 has a critical role in TGF-beta-mediated growth inhibition and apoptosis in colonic epithelial cells. J Surg Res 117(2):296–305

    Article  PubMed  CAS  Google Scholar 

  • Miyaki M, Iijima T, Konishi M, Sakai K, Ishii A, Yasuno M et al (1999) Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene 18(20):3098–3103

    Article  PubMed  CAS  Google Scholar 

  • Mori Y, Yin J, Rashid A, Leggett BA, Young J, Simms L et al (2001) Instabilotyping: comprehensive identification of frameshift mutations caused by coding region microsatellite instability. Cancer Res 61(16):6046–6049

    PubMed  CAS  Google Scholar 

  • Moses HL, Coffey RJ, Jr., Leof EB, Lyons RM, Keski-Oja J (1987) Transforming growth factor beta regulation of cell proliferation. J Cell Physiol Suppl (Suppl 5):1–7

    Google Scholar 

  • Moses H, Yang E, Pietonpol J (1990) TGF-ß stimulation and inhibition of cell proliferation: new mechanistic insights. Cell 63:245–247

    Article  PubMed  CAS  Google Scholar 

  • Moustakas A, Kardassis D (1998) Regulation of the human p21/WAF1/Cip1 promoter in hepatic cells by functional interactions between Sp1 and Smad family members. Proc Natl Acad Sci USA 95(12):6733–6738

    Article  PubMed  CAS  Google Scholar 

  • Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J et al (1999) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96(3):319–328

    Article  PubMed  CAS  Google Scholar 

  • Munoz NM, Upton M, Rojas A, Washington MK, Lin L, Chytil A et al (2006) Transforming growth factor beta receptor type II inactivation induces the malignant transformation of intestinal neoplasms initiated by Apc mutation. Cancer Res 66(20):9837–9844

    Article  PubMed  CAS  Google Scholar 

  • Muraoka-Cook RS, Dumont N, Arteaga CL (2005) Dual role of transforming growth factor beta in mammary tumorigenesis and metastatic progression. Clin Cancer Res 11(2 Pt 2):937s–943s

    PubMed  CAS  Google Scholar 

  • Myeroff L, Parsons R, Kim S-J, Hedrick L, Cho K, Orth K et al (1995) A transforming growth factor ß receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res 55:5545–5547

    PubMed  CAS  Google Scholar 

  • Nakashima R, Song H, Enomoto T, Murata Y, McClaid MR, Casto BC et al (1999) Genetic alterations in the transforming growth factor receptor complex in sporadic endometrial carcinoma. Gene Expr 8(5–6):341–352

    PubMed  CAS  Google Scholar 

  • Nawshad A, Lagamba D, Polad A, Hay ED (2005) Transforming growth factor-beta signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs 179(1–2):11–23

    Article  PubMed  CAS  Google Scholar 

  • Nguyen AV, Pollard JW (2000) Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution. Development 127(14):3107–3118

    PubMed  CAS  Google Scholar 

  • O’Mahony CA, Beauchamp RD, Albo D, Tsujii M, Sheng HM, Shao J et al (1999) Cyclooxygenase-2 alters transforming growth factor-beta 1 response during intestinal tumorigenesis. Surgery 126(2):364–370

    Article  PubMed  Google Scholar 

  • Oft M, Akhurst RJ, Balmain A (2002) Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol 4(7):487–494

    Article  PubMed  CAS  Google Scholar 

  • Oshima M, Oshima H, Taketo M (1996) TGF-ß receptor type II deficiency results in defects of yolk sac hematopoiesis and vasulogenesis. Dev Biol 179:297–302

    Article  PubMed  CAS  Google Scholar 

  • Panopoulou E, Murphy C, Rasmussen H, Bagli E, Rofstad EK, Fotsis T (2005) Activin A suppresses neuroblastoma xenograft tumor growth via antimitotic and antiangiogenic mechanisms. Cancer Res 65(5):1877–1886

    Article  PubMed  CAS  Google Scholar 

  • Park YN, Chae KJ, Oh BK, Choi J, Choi KS, Park C (2004) Expression of Smad7 in hepatocellular carcinoma and dysplastic nodules: resistance mechanism to transforming growth factor-beta. Hepatogastroenterology 51(56):396–400

    PubMed  CAS  Google Scholar 

  • Parsons R, Myeroff L, Liu B, Willson J, Markowitz S, Kinzler K et al (1995) Microsatellite instability and mutations of the transforming growth factor ß type II receptor gene in colorectal cancer. Cancer Res 55:5548–5550

    PubMed  CAS  Google Scholar 

  • Pasche B, Luo Y, Rao P, Nimer S, Dmitrovsky E, Caron P et al (1998) Type I transforming growth factor ß receptor maps to 9q22 and exhibits a polymorphism and a rare variant within a polyadenine tract. Cancer Res 58:2727–2732

    PubMed  CAS  Google Scholar 

  • Pasche B, Kolachana P, Nafa K, Satagopan J, Chen YG, Lo RS et al (1999) TbetaR-I(6A) is a candidate tumor susceptibility allele. Cancer Res 59(22):5678–5682

    PubMed  CAS  Google Scholar 

  • Pasche B, Knobloch TJ, Bian Y, Liu J, Phukan S, Rosman D et al (2005) Somatic acquisition and signaling of TGFBR1*6A in cancer. JAMA 294(13):1634–1646

    Article  PubMed  CAS  Google Scholar 

  • Perlman R, Schiemann WP, Brooks MW, Lodish HF, Weinberg RA (2001) TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol 3(8):708–714

    Article  PubMed  CAS  Google Scholar 

  • Petritsch C, Beug H, Balmain A, Oft M (2000) TGF-beta inhibits p70 S6 kinase via protein phosphatase 2A to induce G(1) arrest. Genes Dev 14(24):3093–3101

    Article  PubMed  CAS  Google Scholar 

  • Pietenpol JA, Stein RW, Moran E, Yaciuk P, Schlegel R, Lyons RM et al (1990) TGF-beta 1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 61(5):777–785

    Article  PubMed  CAS  Google Scholar 

  • Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM et al (1994) p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 8(1):9–22

    Article  PubMed  CAS  Google Scholar 

  • Remy I, Montmarquette A, Michnick SW (2004) PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3. Nat Cell Biol 6(4):358–365

    Article  PubMed  CAS  Google Scholar 

  • Rojas A, Meherem S, Kim YH, Washington MK, Willis JE, Markowitz SD et al (2008) The aberrant methylation of TSP1 suppresses TGF-beta1 activation in colorectal cancer. Int J Cancer 123(1):14–21

    Article  PubMed  CAS  Google Scholar 

  • Rojas A, Padidam M, Cress D, Grady WM (2009) TGF-ß receptor levels regulated the specificity of signaling pathway activation and biological effects of TGF-ß. Biochim Biophys Acta 1793(7):1165–1173

    Article  PubMed  CAS  Google Scholar 

  • Romero-Gallo J, Sozmen EG, Chytil A, Russell WE, Whitehead R, Parks TW et al (2005) Inactivation of TGF-ß signaling in hepatocytes results in an increased proliferative response after partial hepatectomy. Oncogene 24(18):3028–3041

    Article  PubMed  CAS  Google Scholar 

  • Roth S, Sistonen P, Salovaara R, Hemminki A, Loukola A, Johansson M et al (1999) SMAD genes in juvenile polyposis. Genes Chromosomes Cancer 26(1):54–61

    Article  PubMed  CAS  Google Scholar 

  • Sancho E, Batlle E, Clevers H (2004) Signaling pathways in intestinal development and cancer. Annu Rev Cell Dev Biol 20:695–723

    Article  PubMed  CAS  Google Scholar 

  • Schuster N, Krieglstein K (2002) Mechanisms of TGF-beta-mediated apoptosis. Cell Tissue Res 307(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massague J (2001) TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 3(4):400–408

    Article  PubMed  CAS  Google Scholar 

  • Seoane J, Le HV, Shen L, Anderson SA, Massague J (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117(2):211–223

    Article  PubMed  CAS  Google Scholar 

  • Shih WL, Kuo ML, Chuang SE, Cheng AL, Doong SL (2000) Hepatitis B virus X protein inhibits transforming growth factor-beta -induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway. J Biol Chem 275(33):25858–25864

    Article  PubMed  CAS  Google Scholar 

  • Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359(6397):693–699

    Article  PubMed  CAS  Google Scholar 

  • Slattery ML, Herrick JS, Lundgreen A, Wolff RK (2011) Genetic variation in the TGF-beta signaling pathway and colon and rectal cancer risk. Cancer Epidemiol Biomarkers Prev 20(1):57–69

    Article  PubMed  CAS  Google Scholar 

  • Slattery ML, Lundgreen A, Herrick JS, Kadlubar S, Caan BJ, Potter JD et al (2012) Genetic variation in bone morphogenetic protein and colon and rectal cancer. Int J Cancer 130(3):653–664

    Article  PubMed  CAS  Google Scholar 

  • Souchelnytskyi S, Tamaki K, Engstrom U, Wernstedt C, ten Dijke P, Heldin CH (1997) Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J Biol Chem 272(44):28107–28115

    Article  PubMed  CAS  Google Scholar 

  • Stove C, Vanrobaeys F, Devreese B, Van Beeumen J, Mareel M, Bracke M (2004) Melanoma cells secrete follistatin, an antagonist of activin-mediated growth inhibition. Oncogene 23(31): 5330–5339

    Article  PubMed  CAS  Google Scholar 

  • Stroschein SL, Wang W, Zhou S, Zhou Q, Luo K (1999) Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Science 286(5440):771–774

    Article  PubMed  CAS  Google Scholar 

  • Su GH, Bansal R, Murphy KM, Montgomery E, Yeo CJ, Hruban RH et al (2001) ACVR1B (ALK4, activin receptor type 1B) gene mutations in pancreatic carcinoma. Proc Natl Acad Sci USA 98(6):3254–3257

    Article  PubMed  CAS  Google Scholar 

  • Takaku K, Oshima M, Miyoshi H, Matsui M, Seldin M, Taketo M (1998) Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92:645–656

    Article  PubMed  CAS  Google Scholar 

  • Takaku K, Miyoshi H, Matsunaga A, Oshima M, Sasaki N, Taketo MM (1999) Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res 59(24):6113–6117

    PubMed  CAS  Google Scholar 

  • Takaku K, Wrana JL, Robertson EJ, Taketo MM (2002) No effects of Smad2 (madh2) null mutation on malignant progression of intestinal polyps in Apc(delta716) knockout mice. Cancer Res 62(16):4558–4561

    PubMed  CAS  Google Scholar 

  • Takenoshita S, Tani M, Mogi A, Nagashima M, Nagamachi Y, Bennett WP et al (1998) Mutation analysis of the Smad2 gene in human colon cancers using genomic DNA and intron primers. Carcinogenesis 19(5):803–807

    Article  PubMed  CAS  Google Scholar 

  • Taketo MM, Takaku K (2000) Gastro-intestinal tumorigenesis in Smad4 mutant mice. Cytokine Growth Factor Rev 11(1–2):147–157

    Article  PubMed  CAS  Google Scholar 

  • Tang B, Bottinger EP, Jakowlew SB, Bagnall KM, Mariano J, Anver MR et al (1998) Transforming growth factor-beta1 is a new form of tumor suppressor with true haploid insufficiency. Nat Med 4(7):802–807

    Article  PubMed  CAS  Google Scholar 

  • Ten Dijke P, Goumans M-J, Itoh F, Itoh S (2002) Regulation of proliferation by Smad proteins. J Cell Physiol 191:1–16

    Article  PubMed  CAS  Google Scholar 

  • Tenesa A, Dunlop MG (2009) New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet 10(6):353–358

    Article  PubMed  CAS  Google Scholar 

  • Trobridge P, Knoblaugh S, Washington MK, Munoz NM, Tsuchiya KD, Rojas A, et al (2009) TGF-beta receptor inactivation and mutant Kras induce intestinal neoplasms in mice via a beta-catenin independent pathway. Gastroenterology 136(5):1680–1688. e7

    Google Scholar 

  • Turcatel G, Rubin N, El-Hashash A, Warburton D (2012) MIR-99a and MIR-99b modulate TGF-beta induced epithelial to mesenchymal plasticity in normal murine mammary gland cells. PLoS One 7(1):e31032

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319(9):525–532

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Fearon ER, Kern SE, Hamilton SR, Preisinger AC, Nakamura Y et al (1989) Allelotype of colorectal carcinomas. Science 244(4901):207–211

    Article  PubMed  CAS  Google Scholar 

  • Wakefield LM, Roberts AB (2002) TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12(1):22–29

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sun L, Myeroff L, Wang X, Gentry LE, Yang J et al (1995a) Demonstration that mutation of the type II TGF-ß receptor inactivates its tumor suppressor activity in replication error-positive colon carcinoma cells. J Biol Chem 270:22044–22049

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Zhou GH, Birkenmeier TM, Gong J, Sun L, Brattain MG (1995b) Autocrine transforming growth factor beta 1 modulates the expression of integrin alpha 5 beta 1 in human colon carcinoma FET cells. J Biol Chem 270(23):14154–14159

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Radjendirane V, Wary KK, Chakrabarty S (2004a) Transforming growth factor beta regulates cell-cell adhesion through extracellular matrix remodeling and activation of focal adhesion kinase in human colon carcinoma Moser cells. Oncogene 23(32):5558–5561

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sergina N, Ko TC, Gong J, Brattain MG (2004b) Autocrine and exogenous transforming growth factor beta control cell cycle inhibition through pathways with different sensitivity. J Biol Chem 279(38):40237–40244

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Wu T-T, Catalano PJ, Ueki T, Satriano R, Haller DG et al (2001) Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 344(16):1196–1206

    Article  PubMed  CAS  Google Scholar 

  • Woodford-Richens K, Williamson J, Bevan S, Young J, Leggett B, Frayling I et al (2000) Allelic loss at SMAD4 in polyps from juvenile polyposis patients and use of fluorescence in situ hybridization to demonstrate clonal origin of the epithelium. Cancer Res 60(9):2477–2482

    PubMed  CAS  Google Scholar 

  • Xiangming C, Natsugoe S, Takao S, Hokita S, Ishigami S, Tanabe G et al (2001) Preserved Smad4 expression in the transforming growth factor beta signaling pathway is a favorable prognostic factor in patients with advanced gastric cancer. Clin Cancer Res 7(2):277–282

    PubMed  CAS  Google Scholar 

  • Xu X, Brodie SG, Yang X, Im YH, Parks WT, Chen L et al (2000) Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 19(15):1868–1874

    Article  PubMed  CAS  Google Scholar 

  • Yamamura Y, Hua X, Bergelson S, Lodish HF (2000) Critical role of smads and AP-1 complex in TGF-{beta}-dependent apoptosis. J Biol Chem 275(46):36295–36302

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H et al (1999) Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J 18(5):1280–1291

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Kyo S, Takatura M, Sun L (2001) Autocrine transforming growth factor beta suppresses telomerase activity and transcription of human telomerase reverse transcriptase in human cancer cells. Cell Growth Differ 12(2):119–127

    PubMed  CAS  Google Scholar 

  • Yang L, Mao C, Teng Y, Li W, Zhang J, Cheng X et al (2005) Targeted disruption of Smad4 in mouse epidermis results in failure of hair follicle cycling and formation of skin tumors. Cancer Res 65(19):8671–8678

    Article  PubMed  CAS  Google Scholar 

  • Ying SY (1988) Inhibins, activins, and follistatins: gonadal proteins modulating the secretion of follicle-stimulating hormone. Endocr Rev 9(2):267–293

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14(2):163–176

    PubMed  Google Scholar 

  • Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19(1):128–139

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Feng X-H, Wu R-Y, Derynck R (1996) Receptor-associated Mad homologues synergize as effectors of the TGF-ß response. Nature 383:168–172

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Zhao Y, Batres Y, Lin MF, Ying SY (1997) Regulation of growth and prostatic marker expression by activin A in an androgen-sensitive prostate cancer cell line LNCAP. Biochem Biophys Res Commun 234(2):362–365

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y (1999) Transforming growth factor-beta (TGF-beta) type I and type II receptors are both required for TGF-beta-mediated extracellular matrix production in lung fibroblasts. Mol Cell Endocrinol 150(1–2):91–97

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Goodman SN, Galizia G, Lieto E, Ferraraccio F, Pignatelli C et al (2002) Counting alleles to predict recurrence of early-stage colorectal cancers. Lancet 359(9302):219–225

    Article  PubMed  Google Scholar 

  • Zhu Y, Richardson JA, Parada LF, Graff JM (1998) Smad3 mutant mice develop metastatic colorectal cancer. Cell 94(6):703–714

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Support for these studies was provided by the NIH (RO1CA115513, P30CA15704, UO1CA152756, and 5P01CA077852), and a Burroughs Wellcome Fund Translational Research Award for Clinician Scientist (WMG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Grady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grady, W.M. (2013). TGF-ß Signaling Pathway and Colorectal Cancer. In: Haigis, Ph.D., K. (eds) Molecular Pathogenesis of Colorectal Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8412-7_7

Download citation

Publish with us

Policies and ethics