Skip to main content

Advertisement

Log in

Molecular genetics of colorectal cancer: An overview

  • Published:
Current Colorectal Cancer Reports

Abstract

Colorectal cancer (CRC) is a major cause of morbidity and mortality from cancers in the United States. Recent studies have revealed the paradigm in which sequential genetic changes (mutations) result in the progression from normal colonic tissues to frank carcinoma. In particular, the study of hereditary colorectal cancer and polyposis syndromes such as familial adenomatous polyposis and hereditary nonpolyposis colon cancer has contributed enormously to the understanding of the pathogenesis of CRC. Here we describe some of the common genetic pathways in CRC and the mechanisms of action for some of the key genes involved in the formation of CRC. The understanding of the genetic pathways and functions in CRC may lead to the development of novel therapeutic approaches for treating this deadly disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. American Cancer Society: Cancer Facts & Figures 2005 http://www.cancer.org/downloads/STTCAFF2005f4PWSecured.pdf. Accessed January 31, 2006.

  2. Hisamuddin IM, Yang VW: Genetics of colorectal cancer. MedGenMed 2004, 6:13–19.

    PubMed  Google Scholar 

  3. Fearon ER, Vogelstein B: A genetic model for colorectal tumorigenesis. Cell 1990, 61:759–767.

    Article  PubMed  CAS  Google Scholar 

  4. Kinzler KW, Vogelstein B: Lessons from hereditary colorectal cancer. Cell 1996, 87:159–170.

    Article  PubMed  CAS  Google Scholar 

  5. Sparks AB, Morin PJ, Vogelstein B, et al.: Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res 1998, 58:1130–1134.

    PubMed  CAS  Google Scholar 

  6. de la Chapelle A: Genetic predisposition to colorectal cancer. Nat Rev Cancer 2004, 4:769–780. This excellent review article discussed the various genetic mechanisms that predispose to colorectal cancer, including those with low-penetrance.

    Article  PubMed  Google Scholar 

  7. Kinzler KW, Vogelstein B: Landscaping the cancer terrain. Science 1998, 280:1036–1037.

    Article  PubMed  CAS  Google Scholar 

  8. Cruz-Correa M, Giardiello FM: Familial adenomatous polyposis. Gastrointest Endosc 2003, 58:885–894.

    Article  PubMed  Google Scholar 

  9. Kinzler KW, Nilbert MC, Su LK, et al.: Identification of FAP locus genes from chromosome 5q21. Science 1991, 253:661–665.

    Article  PubMed  CAS  Google Scholar 

  10. Nishisho I, Nakamura Y, Miyoshi Y, et al.: Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 1991, 253:665–669.

    Article  PubMed  CAS  Google Scholar 

  11. Groden J, Thliveris A, Samowitz W, et al.: Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991, 66:589–600.

    Article  PubMed  CAS  Google Scholar 

  12. Soravia C, Berk T, Madlensky L, et al.: Genotype-phenotype correlations in attenuated adenomatous polyposis coli. Am J Hum Genet 1998, 62:1290–1301.

    Article  PubMed  CAS  Google Scholar 

  13. Laken SJ, Petersen GM, Gruber SB, et al.: Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat Genet 1997, 17:79–83.

    Article  PubMed  CAS  Google Scholar 

  14. Gruber SB, Petersen GM, Kinzler KW, et al.: Cancer, crash sites, and the new genetics of neoplasia. Gastroenterology 1999, 116:210–212.

    Article  PubMed  CAS  Google Scholar 

  15. Sieber OM, Lipton L, Crabtree M, et al.: Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med 2003, 348:791–799. This article described the Identification of biallelic mutation of MYH as the cause of classic adenomatous polyposis syndrome in the absence of any APC mutations.

    Article  PubMed  Google Scholar 

  16. Halford SE, Rowan AJ, Lipton L, et al.: Germline mutations but not somatic changes at the MYH locus contribute to the pathogenesis of unselected colorectal cancers. Am J Pathol 2003, 162:1545–1548.

    PubMed  CAS  Google Scholar 

  17. Mecklin JP, Jarvinen HJ: Tumor spectrum in cancer family syndrome (hereditary nonpolyposis colorectal cancer). Cancer 1991, 68:1109–1112.

    Article  PubMed  CAS  Google Scholar 

  18. Papadopoulos N, Lindblom A: Molecular basis of HNPCC: mutations of MMR genes. Hum Mutat 1997, 10:89–99.

    Article  PubMed  CAS  Google Scholar 

  19. Markowitz S, Wang J, Myeroff L, et al.: Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 1995, 268:1336–1338.

    Article  PubMed  CAS  Google Scholar 

  20. Souza RF, Appel R, Yin J, et al.: Microsatellite instability in the insulin-like growth factor II receptor gene in gastrointestinal tumours. Nat Genet 1996, 14:255–257.

    Article  PubMed  CAS  Google Scholar 

  21. Rampino N, Yamamoto H, Ionov Y, et al.: Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 1997, 275:967–969.

    Article  PubMed  CAS  Google Scholar 

  22. Hemminki A, Markie D, Tomlinson I, et al.: A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 1998, 391:184–187.

    Article  PubMed  CAS  Google Scholar 

  23. Jenne DE, Reimann H, Nezu J, et al.: Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 1998, 18:38–43.

    Article  PubMed  CAS  Google Scholar 

  24. Sayed MG, Ahmed AF, Ringold JR, et al.: Germline SMAD4 or BMPR1A mutations and phenotype of juvenile polyposis. Ann Surg Oncol 2002, 9:901–906.

    Article  PubMed  CAS  Google Scholar 

  25. Olschwang S, Serova-Sinilnikova OM, Lenoir GM, et al.: PTEN germ-line mutations in juvenile polyposis coli. Nat Genet 1998, 18:12–14.

    Article  PubMed  CAS  Google Scholar 

  26. Marsh DJ, Kum JB, Lunetta KL, et al.: PTEN mutation spectrum and genotype-phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum Mol Genet 1999, 8:1461–1472.

    Article  PubMed  CAS  Google Scholar 

  27. Yang VW: APC as a checkpoint gene: the beginning or the end? Gastroenterology 2002, 123:935–939.

    Article  PubMed  Google Scholar 

  28. Midgley CA, White S, Howitt R, et al.: APC expression in normal human tissues. J Pathol 1997, 181:426–433.

    Article  PubMed  CAS  Google Scholar 

  29. Nathke IS: The adenomatous polyposis coli protein: the Achilles heel of the gut epithelium. Annu Rev Cell Dev Biol 2004, 20:337–366. This paper gave an excellent review of the biochemical and cell biologic mechanisms of action of the tumor suppressor APC.

    Article  PubMed  Google Scholar 

  30. van Es JH, Giles RH, Clevers HC: The many faces of the tumor suppressor gene APC. Exp Cell Res 2001, 264:126–134.

    Article  PubMed  Google Scholar 

  31. Reya T, Clevers H: Wnt signaling in stem cells and cancer. Nature 2005, 434:843–850.

    Article  PubMed  CAS  Google Scholar 

  32. Gregorieff A, Clevers H: Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 2005, 19:877–890.

    Article  PubMed  CAS  Google Scholar 

  33. Bhanot P, Brink M, Samos CH, et al.: A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 1996, 382:225–230.

    Article  PubMed  CAS  Google Scholar 

  34. Tamai K, Semenov M, Kato Y, et al.: LDL-receptor-related proteins in Wnt signal transduction. Nature 2000, 407:530–535.

    Article  PubMed  CAS  Google Scholar 

  35. Pinson KI, Brennan J, Monkley S, et al.: An LDL-receptor- related protein mediates Wnt signalling in mice. Nature 2000, 407:535–538.

    Article  PubMed  CAS  Google Scholar 

  36. Behrens J, von Kries JP, Kuhl M, et al.: Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 1996, 382:638–642.

    Article  PubMed  CAS  Google Scholar 

  37. He TC, Sparks AB, Rago C, et al.: Identification of c-MYC as a target of the APC pathway. Science 1998, 281:1509–1512.

    Article  PubMed  CAS  Google Scholar 

  38. Tetsu O, McCormick F: Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999, 398:422–426.

    Article  PubMed  CAS  Google Scholar 

  39. Miyoshi Y, Nagase H, Ando H, et al.: Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet 1992, 1:229–233.

    Article  PubMed  CAS  Google Scholar 

  40. Jin LH, Shao QJ, Luo W, et al.: Detection of point mutations of the Axin1 gene in colorectal cancers. Int J Cancer 2003, 107:696–699.

    Article  PubMed  CAS  Google Scholar 

  41. Webster MT, Rozycka M, Sara E, et al.: Sequence variants of the axin gene in breast, colon, and other cancers: an analysis of mutations that interfere with GSK3 binding. Genes Chromosomes Cancer 2000, 28:443–453.

    Article  PubMed  CAS  Google Scholar 

  42. Smith KJ, Levy DB, Maupin P, et al.: Wild-type but not mutant APC associates with the microtubule cytoskeleton. Cancer Res 1994, 54:3672–3675.

    PubMed  CAS  Google Scholar 

  43. Su LK, Burrell M, Hill DE, et al.: APC binds to the novel protein EB1. Cancer Res 1995, 55:2972–2977.

    PubMed  CAS  Google Scholar 

  44. Matsumine A, Ogai A, Senda T, et al.: Binding of APC to the human homolog of the Drosophila discs large tumor suppressor protein. Science 1996, 272:1020–1023.

    Article  PubMed  CAS  Google Scholar 

  45. Fodde R, Kuipers J, Rosenberg C, et al.: Mutations in the APC tumor suppressor gene cause chromosomal instability. Nat Cell Biol 2001, 3:433–438.

    Article  PubMed  CAS  Google Scholar 

  46. Kaplan KB, Burds AA, Swedlow JR, et al.: A role for the adenomatous polyposis coli protein in chromosome segregation. Nat Cell Biol 2001, 3:429–432.

    Article  PubMed  CAS  Google Scholar 

  47. Leslie A, Stewart A, Baty DU, et al.: Chromosomal changes in colorectal adenomas: relationship to gene mutations and potential for clinical utility. Genes Chromosomes Cancer 2005, 45:126–135.

    Article  Google Scholar 

  48. Hollstein M, Sidransky D, Vogelstein B, et al.: p53 mutations in human cancers. Science 1991, 253:49–53.

    Article  PubMed  CAS  Google Scholar 

  49. Baker SJ, Fearon ER, Nigro JM, et al.: Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 1989, 244:217–221.

    Article  PubMed  CAS  Google Scholar 

  50. Vogelstein B, Lane D, Levine AJ: Surfing the p53 network. Nature 2000, 408:307–310.

    Article  PubMed  CAS  Google Scholar 

  51. Momand J, Zambetti GP, Olson DC, et al.: The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992, 69:1237–1245.

    Article  PubMed  CAS  Google Scholar 

  52. Honda R, Yasuda H: Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. Embo J 1999, 18:22–27.

    Article  PubMed  CAS  Google Scholar 

  53. Wsierska-Gadek J, Horky M: How the nucleolar sequestration of p53 protein or its interplayers contributes to its (re)-activation. Ann N Y Acad Sci 2003, 1010:266–272.

    Article  PubMed  Google Scholar 

  54. Agarwal ML, Taylor WR, Chernov MV, et al.: The p53 network. J Biol Chem 1998, 273:1–4.

    Article  PubMed  CAS  Google Scholar 

  55. Harris SL, Levine AJ: The p53 pathway: positive and negative feedback loops. Oncogene 2005, 24:2899–2908. This article reviewed the various positive and negative mechanisms of regulation of the tumor suppressor p53’s activity.

    Article  PubMed  CAS  Google Scholar 

  56. el-Deiry WS, Tokino T, Velculescu VE, I et al.: WAF1, a potential mediator of p53 tumor suppression. Cell 1993, 75:817–825.

    Article  PubMed  CAS  Google Scholar 

  57. Taylor WR, Stark GR: Regulation of the G2/M transition by p53. Oncogene 2001, 20:1803–1815.

    Article  PubMed  CAS  Google Scholar 

  58. Hermeking H, Lengauer C, Polyak K, et al.: 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1997, 1:3–11.

    Article  PubMed  CAS  Google Scholar 

  59. Malumbres M, Barbacid M: RAS oncogenes: the first 30 years. Nat Rev Cancer 2003, 3:459–465.

    Article  PubMed  CAS  Google Scholar 

  60. Shields JM, Pruitt K, McFall A, et al.: Understanding Ras: “it ain’t over ’til it’s over.’” Trends Cell Biol 2000, 10:147–154.

    Article  PubMed  CAS  Google Scholar 

  61. Bos JL: Ras oncogenes in human cancer: a review. Cancer Res 1989, 49:4682–4689.

    PubMed  CAS  Google Scholar 

  62. Andreyev HJ, Norman AR, Cunningham D, et al.: Kirsten ras mutations in patients with colorectal cancer: the “RASCAL II” study. Br J Cancer 2001, 85:692–696.

    Article  PubMed  CAS  Google Scholar 

  63. Rajagopalan H, Bardelli A, Lengauer C, et al.: Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 2002, 418:934.

    Article  PubMed  CAS  Google Scholar 

  64. Tuveson DA, Shaw AT, Willis NA, et al.: Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 2004, 5:375–387.

    Article  PubMed  CAS  Google Scholar 

  65. Janssen KP, el-Marjou F, Pinto D, et al.: Targeted expression of oncogenic K-ras in intestinal epithelium causes spontaneous tumorigenesis in mice. Gastroenterology 2002, 123:492–504.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent W. Yang MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hisamuddin, I.M., Yang, V.W. Molecular genetics of colorectal cancer: An overview. Curr colorectal cancer rep 2, 53–59 (2006). https://doi.org/10.1007/s11888-006-0002-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-006-0002-2

Keywords

Navigation