Skip to main content

Sporadic and Inherited Colorectal Cancer: How Epidemiology and Molecular Biology Guide Screening and Treatment

  • Chapter
  • First Online:
The ASCRS Textbook of Colon and Rectal Surgery

Abstract

Colorectal adenocarcinoma arises from combinations of genetic alterations in particular genes and pathways. These alterations typically occur over many years, transforming a polyp into a cancer. If the genetic alterations are inherited, the progression to cancer is faster and more likely. Most sporadic colorectal cancers fit into one of four consensus molecular subtypes, CMS 1–4, based on key pathways which have implications for treatment and outcome. Several inherited syndromes, which carry an increased risk of colorectal cancer resulting from specific genetic alterations, each with their own phenotype and implications for screening and treatment, are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    PubMed  Google Scholar 

  2. Stoffel EM, Koeppe E, Everett J, et al. Germline genetic features of young individuals with colorectal cancer. Gastroenterology. 2018;154:897–905 e891.

    CAS  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Fedewa SA, et al. Colorectal cancer statistics, 2017. CA Cancer J Clin. 2017;67:177–93.

    PubMed  Google Scholar 

  4. Brenner H, Hoffmeister M, Stegmaier C, Brenner G, Altenhofen L, Haug U. Risk of progression of advanced adenomas to colorectal cancer by age and sex: estimates based on 840,149 screening colonoscopies. Gut. 2007;56:1585–9.

    PubMed  PubMed Central  Google Scholar 

  5. Vieira AR, Abar L, Chan DSM, et al. Foods and beverages and colorectal cancer risk: a systematic review and meta-analysis of cohort studies, an update of the evidence of the WCRF-AICR Continuous Update Project. Ann Oncol. 2017;28:1788–802.

    CAS  PubMed  Google Scholar 

  6. Feng Q, Liang S, Jia H, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun. 2015;6:6528.

    CAS  PubMed  Google Scholar 

  7. McTiernan A, Friedenreich CM, Katzmarzyk PT, et al. Physical activity in cancer prevention and survival: a systematic review. Med Sci Sports Exerc. 2019;51:1252–61.

    PubMed  PubMed Central  Google Scholar 

  8. Murphy N, Moreno V, Hughes DJ, et al. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol Asp Med. 2019;69:2–9.

    Google Scholar 

  9. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487: 330–337.

    Google Scholar 

  10. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.

    CAS  PubMed  Google Scholar 

  11. Giannakis M, Mu XJ, Shukla SA, et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 2016;15:857–65.

    Google Scholar 

  12. Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:1626–34.

    CAS  PubMed  Google Scholar 

  13. Tran B, Kopetz S, Tie J, et al. Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer. 2011;117:4623–32.

    CAS  PubMed  Google Scholar 

  14. Kopetz S, Desai J, Chan E, et al. Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J Clin Oncol. 2015;33:4032–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Vu T, Datta PK. Regulation of EMT in colorectal cancer: a culprit in metastasis. Cancers (Basel). 2017;9:171.

    PubMed  Google Scholar 

  16. Sreekunmar R, Harris S, Moutasim K, DeMateos R, Patel A, Emo K, White S, Yagci T, Tulchinsky E, Thomas G, Primrose JN, Sayan AE, Mirnezami AH. Assessment of Nuclear ZEB2 is a biomarker for colorectal cancer outcome and TNM risk stratification. JAMA Network Open. 2018;1:e183115. https://doi.org/10.1001/jamanetworkopen.2018.3115.

  17. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hardiman KM, Sheppard BC. What to do when the pathology from last week’s laparoscopic cholecystectomy is malignant and T1 or T2. J Gastrointest Surg. 2009;13:2037–9.

    CAS  PubMed  Google Scholar 

  19. Ulintz PJ, Greenson JK, Wu R, Fearon ER, Hardiman KM. Lymph node metastases in colon cancer are polyclonal. Clin Cancer Res. 2018;24:2214–24.

    CAS  PubMed  Google Scholar 

  20. Losi L, Baisse B, Bouzourene H, Benhattar J. Evolution of intratumoral genetic heterogeneity during colorectal cancer progression. Carcinogenesis. 2005;26:916–22.

    CAS  PubMed  Google Scholar 

  21. Ptashkin RN, Pagan C, Yaeger R, et al. Chromosome 20q amplification defines a subtype of microsatellite stable, left-sided colon cancers with wild-type RAS/RAF and better overall survival. Mol Cancer Res. 2017;15:708–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997;386:623–7.

    CAS  PubMed  Google Scholar 

  23. Weisenberger DJ, Siegmund KD, Campan M, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–93.

    CAS  PubMed  Google Scholar 

  24. Sakamoto N, Feng Y, Stolfi C, et al. BRAF(V600E) cooperates with CDX2 inactivation to promote serrated colorectal tumorigenesis. elife. 2017;6:e20331.

    PubMed  PubMed Central  Google Scholar 

  25. Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee MS, Menter DG, Kopetz S. Right versus left colon cancer biology: integrating the consensus molecular subtypes. J Natl Compr Cancer Netw. 2017;15:411–9.

    Google Scholar 

  27. Warschkow R, Sulz MC, Marti L, et al. Better survival in right-sided versus left-sided stage I - III colon cancer patients. BMC Cancer. 2016;16:554.

    PubMed  PubMed Central  Google Scholar 

  28. Weiss JM, Pfau PR, O'Connor ES, et al. Mortality by stage for right- versus left-sided colon cancer: analysis of surveillance, epidemiology, and end results--Medicare data. J Clin Oncol. 2011;29:4401–9.

    PubMed  PubMed Central  Google Scholar 

  29. Aljehani MA, Morgan JW, Guthrie LA, et al. Association of primary tumor site with mortality in patients receiving bevacizumab and cetuximab for metastatic colorectal cancer. JAMA Surg. 2018;153:60–7.

    PubMed  Google Scholar 

  30. Mauri G, Sartore-Bianchi A, Russo AG, Marsoni S, Bardelli A, Siena S. Early-onset colorectal cancer in young individuals. Mol Oncol. 2019;13:109–31.

    PubMed  Google Scholar 

  31. Bailey CE, Hu CY, You YN, et al. Increasing disparities in the age-related incidences of colon and rectal cancers in the United States, 1975-2010. JAMA Surg. 2015;150:17–22.

    PubMed  PubMed Central  Google Scholar 

  32. Cavestro GM, Mannucci A, Zuppardo RA, Di Leo M, Stoffel E, Tonon G. Early onset sporadic colorectal cancer: worrisome trends and oncogenic features. Dig Liver Dis. 2018;50:521–32.

    PubMed  Google Scholar 

  33. Peterse EFP, Meester RGS, Siegel RL, et al. The impact of the rising colorectal cancer incidence in young adults on the optimal age to start screening: microsimulation analysis I to inform the American Cancer Society colorectal cancer screening guideline. Cancer. 2018;124:2964–73.

    PubMed  Google Scholar 

  34. NCCN clinical practice guidelines in oncology: colon cancer. Available from URL: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf. Accessed 22 Nov 2019.

  35. NCCN clinical practice guidelines in oncology: rectal cancer. Available from URL: https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf. Accessed 22 Nov 2019.

  36. Pearlman R, Frankel WL, Swanson B, et al. Prevalence and spectrum of germline Cancer susceptibility gene mutations among patients with early-onset colorectal cancer. JAMA Oncol. 2017;3:464–71.

    PubMed  PubMed Central  Google Scholar 

  37. Lieu CH, Golemis EA, Serebriiskii IG, et al. Comprehensive genomic landscapes in early and later onset colorectal cancer. Clin Cancer Res. 2019;25:5852–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Valle L, Vilar E, Tavtigian SV, Stoffel EM. Genetic predisposition to colorectal cancer: syndromes, genes, classification of genetic variants and implications for precision medicine. J Pathol. 2019;247:574–88.

    PubMed  PubMed Central  Google Scholar 

  39. Moller P, Seppala T, Bernstein I, et al. Cancer incidence and survival in Lynch syndrome patients receiving colonoscopic and gynaecological surveillance: first report from the prospective Lynch syndrome database. Gut. 2017;66:464–72.

    PubMed  Google Scholar 

  40. Burn J, Gerdes AM, Macrae F, et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet. 2011;378:2081–7.

    PubMed  PubMed Central  Google Scholar 

  41. Vasen HF, Abdirahman M, Brohet R, et al. One to 2-year surveillance intervals reduce risk of colorectal cancer in families with Lynch syndrome. Gastroenterology. 2010;138:2300–6.

    PubMed  Google Scholar 

  42. Maby P, Tougeron D, Hamieh M, et al. Correlation between density of CD8+ T-cell infiltrate in microsatellite unstable colorectal cancers and frameshift mutations: a rationale for personalized immunotherapy. Cancer Res. 2015;75:3446–55.

    CAS  PubMed  Google Scholar 

  43. Hampel H, Pearlman R, Beightol M, et al. Assessment of tumor sequencing as a replacement for Lynch syndrome screening and current molecular tests for patients with colorectal cancer. JAMA Oncol. 2018;4:806–13.

    PubMed  Google Scholar 

  44. Rubenstein JH, Enns R, Heidelbaugh J, Barkun A, Clinical Guidelines C. American Gastroenterological Association Institute guideline on the diagnosis and management of Lynch syndrome. Gastroenterology. 2015;149:777–82; quiz e716–777.

    PubMed  Google Scholar 

  45. Sinicrope FA. Lynch syndrome-associated colorectal cancer. N Engl J Med. 2018;379:764–73.

    CAS  PubMed  Google Scholar 

  46. Lynch HT, Shaw MW, Magnuson CW, Larsen AL, Krush AJ. Hereditary factors in cancer. Study of two large Midwestern kindreds. Arch Intern Med. 1966;117:206–12.

    CAS  PubMed  Google Scholar 

  47. Gupta S, Provenzale D, Llor X, et al. NCCN guidelines insights: genetic/familial high-risk assessment: colorectal, version 2.2019. J Natl Compr Cancer Netw. 2019;17:1032–41.

    Google Scholar 

  48. Koopman M, Kortman GA, Mekenkamp L, et al. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br J Cancer. 2009;100:266–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Khattab A, Monga DK. Turcot syndrome. Treasure Island: StatPearls; 2020.

    Google Scholar 

  51. John AM, Schwartz RA. Muir-Torre syndrome (MTS): an update and approach to diagnosis and management. J Am Acad Dermatol. 2016;74:558–66.

    PubMed  Google Scholar 

  52. Lindor NM, Rabe K, Petersen GM, et al. Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA. 2005;293:1979–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zetner DB, Bisgaard ML. Familial Colorectal Cancer Type X. Curr Genomics. 2017;18:341–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Newton K, Green K, Lalloo F, Evans DG, Hill J. Colonoscopy screening compliance and outcomes in patients with Lynch syndrome. Color Dis. 2015;17:38–46.

    CAS  Google Scholar 

  55. Jarvinen HJ, Renkonen-Sinisalo L, Aktan-Collan K, Peltomaki P, Aaltonen LA, Mecklin JP. Ten years after mutation testing for Lynch syndrome: cancer incidence and outcome in mutation-positive and mutation-negative family members. J Clin Oncol. 2009;27:4793–7.

    PubMed  Google Scholar 

  56. Cirillo L, Urso ED, Parrinello G, et al. High risk of rectal cancer and of metachronous colorectal cancer in probands of families fulfilling the Amsterdam criteria. Ann Surg. 2013;257:900–4.

    PubMed  Google Scholar 

  57. Jenkins MA, Dowty JG, Ait Ouakrim D, et al. Short-term risk of colorectal cancer in individuals with lynch syndrome: a meta-analysis. J Clin Oncol. 2015;33:326–31.

    PubMed  Google Scholar 

  58. Giardiello FM, Allen JI, Axilbund JE, et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US multi-society task force on colorectal cancer. Dis Colon Rectum. 2014;57:1025–48.

    PubMed  Google Scholar 

  59. Herzig DO, Buie WD, Weiser MR, et al. Clinical practice guidelines for the surgical treatment of patients with Lynch syndrome. Dis Colon Rectum. 2017;60:137–43.

    PubMed  Google Scholar 

  60. Schmeler KM, Lynch HT, Chen LM, et al. Prophylactic surgery to reduce the risk of gynecologic cancers in the Lynch syndrome. N Engl J Med. 2006;354:261–9.

    CAS  PubMed  Google Scholar 

  61. Bonadona V, Bonaiti B, Olschwang S, et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011;305:2304–10.

    CAS  PubMed  Google Scholar 

  62. Kalady MF, McGannon E, Vogel JD, Manilich E, Fazio VW, Church JM. Risk of colorectal adenoma and carcinoma after colectomy for colorectal cancer in patients meeting Amsterdam criteria. Ann Surg. 2010;252:507–11; discussion 511–503.

    PubMed  Google Scholar 

  63. Heneghan HM, Martin ST, Winter DC. Segmental vs extended colectomy in the management of hereditary nonpolyposis colorectal cancer: a systematic review and meta-analysis. Color Dis. 2015;17:382–9.

    CAS  Google Scholar 

  64. Parry S, Win AK, Parry B, et al. Metachronous colorectal cancer risk for mismatch repair gene mutation carriers: the advantage of more extensive colon surgery. Gut. 2011;60:950–7.

    PubMed  Google Scholar 

  65. Natarajan N, Watson P, Silva-Lopez E, Lynch HT. Comparison of extended colectomy and limited resection in patients with Lynch syndrome. Dis Colon Rectum. 2010;53:77–82.

    PubMed  Google Scholar 

  66. Haanstra JF, de Vos Tot Nederveen Cappel WH, Gopie JP, et al. Quality of life after surgery for colon cancer in patients with Lynch syndrome: partial versus subtotal colectomy. Dis Colon Rectum. 2012;55:653–9.

    PubMed  Google Scholar 

  67. Kalady MF, Lipman J, McGannon E, Church JM. Risk of colonic neoplasia after proctectomy for rectal cancer in hereditary nonpolyposis colorectal cancer. Ann Surg. 2012;255:1121–5.

    PubMed  Google Scholar 

  68. Win AK, Parry S, Parry B, et al. Risk of metachronous colon cancer following surgery for rectal cancer in mismatch repair gene mutation carriers. Ann Surg Oncol. 2013;20:1829–36.

    PubMed  PubMed Central  Google Scholar 

  69. Andre T, de Gramont A, Vernerey D, et al. Adjuvant fluorouracil, leucovorin, and oxaliplatin in stage II to III colon cancer: updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J Clin Oncol. 2015;33:4176–87.

    CAS  PubMed  Google Scholar 

  70. Zaanan A, Shi Q, Taieb J, et al. Role of deficient DNA mismatch repair status in patients with stage III colon cancer treated with FOLFOX adjuvant chemotherapy: a pooled analysis from 2 randomized clinical trials. JAMA Oncol. 2018;4:379–83.

    PubMed  Google Scholar 

  71. Sargent DJ, Marsoni S, Monges G, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol. 2010;28:3219–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sinicrope FA, Shi Q, Allegra CJ, et al. Association of DNA mismatch repair and mutations in BRAF and KRAS with survival after recurrence in stage III colon cancers : a secondary analysis of 2 randomized clinical trials. JAMA Oncol. 2017;3:472–80.

    PubMed  PubMed Central  Google Scholar 

  73. Bruzzi M, Auclin E, Lo Dico R, et al. Influence of molecular status on recurrence site in patients treated for a stage III colon cancer: a post hoc analysis of the PETACC-8 trial. Ann Surg Oncol. 2019;26:3561–7.

    CAS  PubMed  Google Scholar 

  74. Syngal S, Brand RE, Church JM, et al. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110:223–62; quiz 263.

    PubMed  PubMed Central  Google Scholar 

  75. Palles C, Cazier JB, Howarth KM, et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet. 2013;45:136–44.

    CAS  PubMed  Google Scholar 

  76. Valle L, Hernandez-Illan E, Bellido F, et al. New insights into POLE and POLD1 germline mutations in familial colorectal cancer and polyposis. Hum Mol Genet. 2014;23:3506–12.

    CAS  PubMed  Google Scholar 

  77. Valle L, de Voer RM, Goldberg Y, et al. Update on genetic predisposition to colorectal cancer and polyposis. Mol Asp Med. 2019;69:10–26.

    CAS  Google Scholar 

  78. Bellido F, Pineda M, Aiza G, et al. POLE and POLD1 mutations in 529 kindred with familial colorectal cancer and/or polyposis: review of reported cases and recommendations for genetic testing and surveillance. Genet Med. 2016;18:325–32.

    CAS  PubMed  Google Scholar 

  79. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Nieuwenhuis MH, Vasen HF. Correlations between mutation site in APC and phenotype of familial adenomatous polyposis (FAP): a review of the literature. Crit Rev Oncol Hematol. 2007;61:153–61.

    CAS  PubMed  Google Scholar 

  81. Church J, Xhaja X, LaGuardia L, O’Malley M, Burke C, Kalady M. Desmoids and genotype in familial adenomatous polyposis. Dis Colon Rectum. 2015;58:444–8.

    Google Scholar 

  82. Gibbons DC, Sinha A, Phillips RK, Clark SK. Colorectal cancer: no longer the issue in familial adenomatous polyposis? Familial Cancer. 2011;10:11–20.

    PubMed  Google Scholar 

  83. Bulow S, Bjork J, Christensen IJ, et al. Duodenal adenomatosis in familial adenomatous polyposis. Gut. 2004;53:381–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Latchford AR, Neale KF, Spigelman AD, Phillips RK, Clark SK. Features of duodenal cancer in patients with familial adenomatous polyposis. Clin Gastroenterol Hepatol. 2009;7:659–63.

    PubMed  Google Scholar 

  85. Herraiz M, Barbesino G, Faquin W, et al. Prevalence of thyroid cancer in familial adenomatous polyposis syndrome and the role of screening ultrasound examinations. Clin Gastroenterol Hepatol. 2007;5:367–73.

    PubMed  Google Scholar 

  86. Nusliha A, Dalpatadu U, Amarasinghe B, Chandrasinghe PC, Deen KI. Congenital hypertrophy of retinal pigment epithelium (CHRPE) in patients with familial adenomatous polyposis (FAP); a polyposis registry experience. BMC Res Notes. 2014;7:734.

    PubMed  PubMed Central  Google Scholar 

  87. Sinha A, Tekkis PP, Gibbons DC, Phillips RK, Clark SK. Risk factors predicting desmoid occurrence in patients with familial adenomatous polyposis: a meta-analysis. Color Dis. 2011;13:1222–9.

    CAS  Google Scholar 

  88. Church J, Berk T, Boman BM, et al. Staging intra-abdominal desmoid tumors in familial adenomatous polyposis: a search for a uniform approach to a troubling disease. Dis Colon Rectum. 2005;48:1528–34.

    PubMed  Google Scholar 

  89. Quintini C, Ward G, Shatnawei A, et al. Mortality of intra-abdominal desmoid tumors in patients with familial adenomatous polyposis: a single center review of 154 patients. Ann Surg. 2012;255:511–6.

    PubMed  Google Scholar 

  90. Quast DR, Schneider R, Burdzik E, Hoppe S, Moslein G. Long-term outcome of sporadic and FAP-associated desmoid tumors treated with high-dose selective estrogen receptor modulators and sulindac: a single-center long-term observational study in 134 patients. Familial Cancer. 2016;15:31–40.

    CAS  PubMed  Google Scholar 

  91. Matsumoto T, Iida M, Mizuno M, Shimizu M, Nakamura S, Fujishima M. In vivo observation of the ileal microadenoma in familial adenomatous polyposis. Am J Gastroenterol. 1999;94:3354–8.

    CAS  PubMed  Google Scholar 

  92. Bulow S. Results of national registration of familial adenomatous polyposis. Gut. 2003;52:742–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Burt RW, Leppert MF, Slattery ML, et al. Genetic testing and phenotype in a large kindred with attenuated familial adenomatous polyposis. Gastroenterology. 2004;127:444–51.

    PubMed  Google Scholar 

  94. Knudsen AL, Bisgaard ML, Bulow S. Attenuated familial adenomatous polyposis (AFAP). A review of the literature. Familial Cancer. 2003;2:43–55.

    PubMed  Google Scholar 

  95. da Luz Moreira A, Church JM, Burke CA. The evolution of prophylactic colorectal surgery for familial adenomatous polyposis. Dis Colon Rectum. 2009;52:1481–6.

    PubMed  Google Scholar 

  96. Kartheuser A, Stangherlin P, Brandt D, Remue C, Sempoux C. Restorative proctocolectomy and ileal pouch-anal anastomosis for familial adenomatous polyposis revisited. Familial Cancer. 2006;5:241–60; discussion 261–242.

    PubMed  Google Scholar 

  97. Olsen KO, Juul S, Bulow S, et al. Female fecundity before and after operation for familial adenomatous polyposis. Br J Surg. 2003;90:227–31.

    CAS  PubMed  Google Scholar 

  98. Gunther K, Braunrieder G, Bittorf BR, Hohenberger W, Matzel KE. Patients with familial adenomatous polyposis experience better bowel function and quality of life after ileorectal anastomosis than after ileoanal pouch. Color Dis. 2003;5:38–44.

    CAS  Google Scholar 

  99. Koskenvuo L, Mustonen H, Renkonen-Sinisalo L, Jarvinen HJ, Lepisto A. Comparison of proctocolectomy and ileal pouch-anal anastomosis to colectomy and ileorectal anastomosis in familial adenomatous polyposis. Familial Cancer. 2015;14:221–7.

    CAS  PubMed  Google Scholar 

  100. Nieuwenhuis MH, Bulow S, Bjork J, et al. Genotype predicting phenotype in familial adenomatous polyposis: a practical application to the choice of surgery. Dis Colon Rectum. 2009;52:1259–63.

    PubMed  Google Scholar 

  101. Nieuwenhuis MH, Mathus-Vliegen LM, Slors FJ, et al. Genotype-phenotype correlations as a guide in the management of familial adenomatous polyposis. Clin Gastroenterol Hepatol. 2007;5:374–8.

    PubMed  Google Scholar 

  102. Church J. Ileoanal pouch neoplasia in familial adenomatous polyposis: an underestimated threat. Dis Colon Rectum. 2005;48:1708–13.

    PubMed  Google Scholar 

  103. Lovegrove RE, Constantinides VA, Heriot AG, et al. A comparison of hand-sewn versus stapled ileal pouch anal anastomosis (IPAA) following proctocolectomy: a meta-analysis of 4183 patients. Ann Surg. 2006;244:18–26.

    PubMed  PubMed Central  Google Scholar 

  104. Al-Tassan N, Chmiel NH, Maynard J, et al. Inherited variants of MYH associated with somatic G:C-->T:A mutations in colorectal tumors. Nat Genet. 2002;30:227–32.

    CAS  PubMed  Google Scholar 

  105. Guarinos C, Juarez M, Egoavil C, et al. Prevalence and characteristics of MUTYH-associated polyposis in patients with multiple adenomatous and serrated polyps. Clin Cancer Res. 2014;20:1158–68.

    CAS  PubMed  Google Scholar 

  106. Nielsen M, Morreau H, Vasen HF, Hes FJ. MUTYH-associated polyposis (MAP). Crit Rev Oncol Hematol. 2011;79:1–16.

    PubMed  Google Scholar 

  107. Win AK, Jenkins MA, Dowty JG, et al. Prevalence and penetrance of major genes and polygenes for colorectal cancer. Cancer Epidemiol Biomark Prev. 2017;26:404–12.

    CAS  Google Scholar 

  108. Jenkins MA, Croitoru ME, Monga N, et al. Risk of colorectal cancer in monoallelic and biallelic carriers of MYH mutations: a population-based case-family study. Cancer Epidemiol Biomark Prev. 2006;15:312–4.

    CAS  Google Scholar 

  109. Walton SJ, Kallenberg FG, Clark SK, Dekker E, Latchford A. Frequency and features of duodenal adenomas in patients with MUTYH-associated polyposis. Clin Gastroenterol Hepatol. 2016;14:986–92.

    PubMed  Google Scholar 

  110. Dekker E, Bleijenberg AGC, Balaguer F, et al. Update on the World Health Organization criteria for diagnosis of serrated polyposis syndrome. Gastroenterology. 2020;158(6):1520–3.

    PubMed  Google Scholar 

  111. JEG IJ, Bevan R, Senore C, et al. Detection rate of serrated polyps and serrated polyposis syndrome in colorectal cancer screening cohorts: a European overview. Gut. 2017;66:1225–32.

    Google Scholar 

  112. Orlowska J. Hyperplastic polyposis syndrome and the risk of colorectal cancer. Gut. 2012;61:470–1; author reply 471–472.

    PubMed  Google Scholar 

  113. Biswas S, Ellis AJ, Guy R, Savage H, Madronal K, East JE. High prevalence of hyperplastic polyposis syndrome (serrated polyposis) in the NHS bowel cancer screening programme. Gut. 2013;62:475.

    PubMed  Google Scholar 

  114. Gala MK, Mizukami Y, Le LP, et al. Germline mutations in oncogene-induced senescence pathways are associated with multiple sessile serrated adenomas. Gastroenterology. 2014;146:520–9.

    CAS  PubMed  Google Scholar 

  115. Bleijenberg AG, JE IJ, van Herwaarden YJ, et al. Personalised surveillance for serrated polyposis syndrome: results from a prospective 5-year international cohort study. Gut. 2020;69:112–21.

    PubMed  Google Scholar 

  116. Parry S, Burt RW, Win AK, et al. Reducing the polyp burden in serrated polyposis by serial colonoscopy: the impact of nationally coordinated community surveillance. N Z Med J. 2017;130:57–67.

    PubMed  Google Scholar 

  117. Jasperson KW, Kanth P, Kirchhoff AC, et al. Serrated polyposis: colonic phenotype, extracolonic features, and familial risk in a large cohort. Dis Colon Rectum. 2013;56:1211–6.

    PubMed  Google Scholar 

  118. Gilad O, Rosner G, Fliss-Isakov N, et al. Clinical and histologic overlap and distinction among various hamartomatous polyposis syndromes. Clin Transl Gastroenterol. 2019;10:1–9.

    PubMed  Google Scholar 

  119. Sayed MG, Ahmed AF, Ringold JR, et al. Germline SMAD4 or BMPR1A mutations and phenotype of juvenile polyposis. Ann Surg Oncol. 2002;9:901–6.

    CAS  PubMed  Google Scholar 

  120. Brosens LA, van Hattem A, Hylind LM, et al. Risk of colorectal cancer in juvenile polyposis. Gut. 2007;56:965–7.

    PubMed  PubMed Central  Google Scholar 

  121. Oncel M, Church JM, Remzi FH, Fazio VW. Colonic surgery in patients with juvenile polyposis syndrome: a case series. Dis Colon Rectum. 2005;48:49–55; discussion 55–46.

    PubMed  Google Scholar 

  122. Aretz S, Stienen D, Uhlhaas S, et al. High proportion of large genomic STK11 deletions in Peutz-Jeghers syndrome. Hum Mutat. 2005;26:513–9.

    CAS  PubMed  Google Scholar 

  123. Schreibman IR, Baker M, Amos C, McGarrity TJ. The hamartomatous polyposis syndromes: a clinical and molecular review. Am J Gastroenterol. 2005;100:476–90.

    PubMed  Google Scholar 

  124. Hearle N, Schumacher V, Menko FH, et al. STK11 status and intussusception risk in Peutz-Jeghers syndrome. J Med Genet. 2006;43:e41.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. de Brabander J, Eskens F, Korsse SE, et al. Chemoprevention in patients with Peutz-Jeghers syndrome: lessons learned. Oncologist. 2018;23:399–e333.

    PubMed  PubMed Central  Google Scholar 

  126. Heald B, Mester J, Rybicki L, Orloff MS, Burke CA, Eng C. Frequent gastrointestinal polyps and colorectal adenocarcinomas in a prospective series of PTEN mutation carriers. Gastroenterology. 2010;139:1927–33.

    CAS  PubMed  Google Scholar 

  127. Tan MH, Mester JL, Ngeow J, Rybicki LA, Orloff MS, Eng C. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012;18:400–7.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin M. Hardiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glasgow, S.C., Hardiman, K.M. (2022). Sporadic and Inherited Colorectal Cancer: How Epidemiology and Molecular Biology Guide Screening and Treatment. In: Steele, S.R., Hull, T.L., Hyman, N., Maykel, J.A., Read, T.E., Whitlow, C.B. (eds) The ASCRS Textbook of Colon and Rectal Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-66049-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66049-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66048-2

  • Online ISBN: 978-3-030-66049-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics