Skip to main content

Advertisement

Log in

Cardiac Contractility Monitoring: an Important Therapy in the Treatment of Advanced Heart Failure

  • Heart Failure (HJ Eisen, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

A Correction to this article was published on 08 September 2020

This article has been updated

Abstract

Purpose of Review

This review highlights the mechanisms of action of cardiac contractility modulation (CCM) and the clinical data which supports its use for the appropriate patient population.

Recent Findings

CCM has beneficial effects on myocardial calcium handling and reverse remodeling of abnormal genetic programs. Clinical trials show sustained improvements in quality of life, exercise tolerance, and heart failure symptoms.

Summary

Heart failure is a global epidemic that is expected to increase in prevalence over the coming years. Despite improvements in, and the standardization of, optimal medical therapy (OMT), morbidity and mortality remain unacceptably high, with a 5-year mortality rate of 50%. While more recent advances in device therapies, including chronic resynchronization therapy (CRT), and left ventricular assist devices (LVADs), have changed the care of advanced heart failure for a certain subset of patients, there remains a therapeutic gap in the treatment of patients with heart failure and reduced ejection fraction (HFrEF) who are not candidates for CRT. CCM is a novel device-based therapy which delivers an electrical stimulus during the absolute refractory period and has been shown to improve heart failure symptoms, exercise tolerance, and quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 08 September 2020

    The article title in the original publication contains a mistake.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Liu L, Eisen HJ. Epidemiology of heart failure and scope of the problem. Cardiol Clin. 2014;32(1):1–8. https://doi.org/10.1016/j.ccl.2013.09.009.

    Article  CAS  PubMed  Google Scholar 

  2. Neumann T, Biermann J, Erbel R, et al. Heart failure: the commonest reason for hospital admission in Germany: medical and economic perspectives. Dtsch Arztebl Int. 2009;106(16):269–75. https://doi.org/10.3238/arztebl.2009.0269.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Young JB. The global epidemiology of heart failure. Med Clin North Am. 2004;88(5):1135–43. https://doi.org/10.1016/j.mcna.2004.06.001.

    Article  PubMed  Google Scholar 

  4. Lüscher TF. Heart failure: the cardiovascular epidemic of the 21st century. Eur Heart J. 2015;36(7):395–7. https://doi.org/10.1093/eurheartj/ehv004.

    Article  PubMed  Google Scholar 

  5. Friedrich EB, Böhm M. Management of end stage heart failure. Heart. 2007;93(5):626–31. https://doi.org/10.1136/hrt.2006.098814.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hunt SA, Abraham WT, Chin MH, et al. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (writing committee to update the 2001 guidelines for the evaluation and management of heart failure). J Am Coll Cardiol. 2005;46(6). https://doi.org/10.1016/j.jacc.2005.08.022.

  7. Schocken DD, Benjamin EJ, Fonarow GC, Krumholz HM, Levy D, Mensah GA, et al. Prevention of heart failure: a scientific statement from the American Heart Association councils on epidemiology and prevention, clinical cardiology, cardiovascular nursing, and high blood pressure research; quality of care and outcomes research interdisciplinary working group; and functional genomics and translational biology interdisciplinary working group. Circulation. 2008;117(19):2544–65. https://doi.org/10.1161/CIRCULATIONAHA.107.188965.

    Article  PubMed  Google Scholar 

  8. Hunt SA, Abraham WT, Chin MH, et al. Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009, 2009;119(14). https://doi.org/10.1161/CIRCULATIONAHA.109.192065.

  9. Biton Y, Rosero S, Moss A, Zareba W, Kutyifa V, Baman J, et al. Long-term survival with implantable Cardioverter-defibrillator in different symptomatic functional classes of heart failure. Am J Cardiol. 2018;121(5):615–20. https://doi.org/10.1016/j.amjcard.2017.11.032.

    Article  PubMed  Google Scholar 

  10. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352(3):225–37. https://doi.org/10.1056/NEJMoa043399.

    Article  CAS  Google Scholar 

  11. Kirklin JK, Pagani FD, Kormos RL. et al, Eighth annual INTERMACS report: Special focus on framing the impact of adverse events. J Heart Lung Transplant. 2017. https://doi.org/10.1016/j.healun.2017.07.005.

  12. Cleland JGF, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352(15):1539–49. https://doi.org/10.1056/NEJMoa050496.

    Article  CAS  PubMed  Google Scholar 

  13. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355(3):251–9. https://doi.org/10.1056/NEJMoa052256.

    Article  CAS  PubMed  Google Scholar 

  14. Zarrinkoub R, Wettermark B, Wändell P, Mejhert M, Szulkin R, Ljunggren G, et al. The epidemiology of heart failure, based on data for 2.1 million inhabitants in Sweden. Eur J Heart Fail. 2013;15(9):995–1002. https://doi.org/10.1093/eurjhf/hft064.

    Article  PubMed  Google Scholar 

  15. Yu CM, Chan JYS, Zhang Q, Yip GWK, Lam YY, Chan A, et al. Impact of cardiac contractility modulation on left ventricular global and regional function and remodeling. JACC Cardiovasc Imaging. 2009;2(12):1341–9. https://doi.org/10.1016/j.jcmg.2009.07.011.

    Article  PubMed  Google Scholar 

  16. Müller D, Remppis A, Schauerte P, Schmidt-Schweda S, Burkhoff D, Rousso B, et al. Clinical effects of long-term cardiac contractility modulation (CCM) in subjects with heart failure caused by left ventricular systolic dysfunction. Clin Res Cardiol. 2017;106(11):893–904. https://doi.org/10.1007/s00392-017-1135-9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stix G, Borggrefe M, Wolpert C, Hindricks G, Kottkamp H, Böcker D, et al. FT chronic electrical stimulation during the absolute refractory period of the myocardium improves severe heart failure. Eur Heart J. 2004;25(8):650–5. https://doi.org/10.1016/j.ehj.2004.02.027.

    Article  PubMed  Google Scholar 

  18. Kadish A, Nademanee K, Volosin K, et al. A randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. Am Heart J. 2011;161(2). https://doi.org/10.1016/j.ahj.2010.10.025.

  19. Borggrefe MM, Lawo T, Butter C, Schmidinger H, Lunati M, Pieske B, et al. Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure. Eur Heart J. 2008;29(8):1019–28. https://doi.org/10.1093/eurheartj/ehn020.

    Article  PubMed  Google Scholar 

  20. Kleemann T. Cardiac contractility modulation. A new form of therapy for patients with heart failure and narrow QRS complex? Herz. 2015;40(7):945–51. https://doi.org/10.1007/s00059-015-4362-8.

    Article  CAS  PubMed  Google Scholar 

  21. Kuschyk J, Kloppe A, Schmidt-Schweda S, Bonnemeier H, Rousso B, Röger S. Cardiac contractility modulation: a technical guide for device implantation. Rev Cardiovasc Med. 18(1):1–13 http://www.ncbi.nlm.nih.gov/pubmed/28509888. Accessed March 12, 2020.

  22. •• Abraham WT, Kuck KH, Goldsmith RL, Lindenfeld JA, Reddy VY, Carson PE, et al. A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation. JACC Heart Fail. 2018;6(10):874–83. https://doi.org/10.1016/j.jchf.2018.04.010This subgroup analysis of paients in the FIX-HF-5 study showed that CCM improved exercise tolerance and quality of life in patients with ejection fractions between 25 and 45%. The inclusion of patients with an EF between 35 and 45% had not been investigated before and led to the FDA labelling CCM for use in patients with an EF up to 45%.

    Article  PubMed  Google Scholar 

  23. Butter C, Wellnhofer E, Schlegl M, Winbeck G, Fleck E, Sabbah HN. Enhanced inotropic state of the failing left ventricle by cardiac contractility modulation electrical signals is not associated with increased myocardial oxygen consumption. J Card Fail. 2007;13(2):137–42. https://doi.org/10.1016/j.cardfail.2006.11.004.

    Article  PubMed  Google Scholar 

  24. Burkhoff D, Shemer I, Felzen B, et al. Electric currents applied during the refractory period can modulate cardiac contractility in vitro and in vivo. Heart Fail Rev. 2001;6(1):27–34. https://doi.org/10.1023/a:1009851107189.

    Article  CAS  PubMed  Google Scholar 

  25. Morita H, Suzuki G, Haddad W, Mika Y, Tanhehco EJ, Sharov VG, et al. Cardiac contractility modulation with nonexcitatory electric signals improves left ventricular function in dogs with chronic heart failure. J Card Fail. 2003;9(1):69–75. https://doi.org/10.1054/jcaf.2003.8.

    Article  PubMed  Google Scholar 

  26. Lompré AM, Hajjar RJ, Harding SE, Kranias EG, Lohse MJ, Marks AR. Ca2+ cycling and new therapeutic approaches for heart failure. Circulation. 2010;121(6):822–30. https://doi.org/10.1161/CIRCULATIONAHA.109.890954.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lyon AR, Samara MA, Feldman DS. Cardiac contractility modulation therapy in advanced systolic heart failure. Nat Rev Cardiol. 2013;10(10):584–98. https://doi.org/10.1038/nrcardio.2013.114.

    Article  PubMed  Google Scholar 

  28. Imai M, Rastogi S, Gupta RC, Mishra S, Sharov VG, Stanley WC, et al. Therapy with cardiac contractility modulation electrical signals improves left ventricular function and remodeling in dogs with chronic heart failure. J Am Coll Cardiol. 2007;49(21):2120–8. https://doi.org/10.1016/j.jacc.2006.10.082.

    Article  PubMed  Google Scholar 

  29. Butter C, Rastogi S, Minden HH, Meyhöfer J, Burkhoff D, Sabbah HN. Cardiac contractility modulation electrical signals improve myocardial gene expression in patients with heart failure. J Am Coll Cardiol. 2008;51(18):1784–9. https://doi.org/10.1016/j.jacc.2008.01.036.

    Article  CAS  PubMed  Google Scholar 

  30. Gupta RC, Mishra S, Rastogi S, Wang M, Rousso B, Mika Y, et al. Ca2+-binding proteins in dogs with heart failure: effects of cardiac contractility modulation electrical signals. Clin Transl Sci. 2009;2(3):211–5. https://doi.org/10.1111/j.1752-8062.2009.00097.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kahwash R, Burkhoff D, Abraham WT. Cardiac contractility modulation in patients with advanced heart failure. Expert Rev Cardiovasc Ther. 2013;11(5):635–45. https://doi.org/10.1586/erc.13.48.

    Article  CAS  PubMed  Google Scholar 

  32. FDA EXECUTIVE SUMMARY MEMORANDUM Circulatory System Devices Panel Meeting P180036 Impulse Dynamics’ OPTIMIZER SMART System.; 2018. https://www.fda.gov/medicaldevices/deviceregulationandguidance/howtomarketyourdevice/ucm441467.htm. Accessed April 16, 2020.

  33. Butter C, Meyhöfer J, Seifert M, Neuss M, Minden H-H. First use of cardiac contractility modulation (CCM) in a patient failing CRT therapy: clinical and technical aspects of combined therapies. Eur J Heart Fail. 2007;9(9):955–8. https://doi.org/10.1016/j.ejheart.2007.05.012.

    Article  PubMed  Google Scholar 

  34. Nägele H, Behrens S, Eisermann C. Cardiac contractility modulation in non-responders to cardiac resynchronization therapy. Europace. 2008;10(12):1375–80. https://doi.org/10.1093/europace/eun257.

    Article  PubMed  Google Scholar 

  35. Tschöpe C, Van Linthout S, Spillmann F, et al. Cardiac contractility modulation signals improve exercise intolerance and maladaptive regulation of cardiac key proteins for systolic and diastolic function in HFpEF. Int J Cardiol. 2016;203:1061–6. https://doi.org/10.1016/j.ijcard.2015.10.208.

    Article  PubMed  Google Scholar 

  36. Anter E, Jessup M, Callans DJ. Atrial fibrillation and heart failure: treatment considerations for a dual epidemic. Circulation. 2009;119(18):2516–25. https://doi.org/10.1161/CIRCULATIONAHA.108.821306.

    Article  PubMed  Google Scholar 

  37. Maisel WH, Stevenson LW. Atrial fibrillation in heart failure: epidemiology, pathophysiology, and rationale for therapy. Am J Cardiol. 2003;91(6 SUPPL. 1):2–8. https://doi.org/10.1016/S0002-9149(02)03373-8.

    Article  Google Scholar 

  38. Rö S, Schneider R, Rudic B. et al, Cardiac contractility modulation: first experience in heart failure patients with reduced ejection fraction and permanent atrial fibrillation. EP Europace. 2014;16(8):1205–1209. https://doi.org/10.1093/europace/euu050.

  39. Bogner HR, Miller SD, de Vries HF, Chhatre S, Jayadevappa R. Assessment of cost and health resource utilization for elderly patients with heart failure and diabetes mellitus. J Card Fail. 2010;16(6):454–60. https://doi.org/10.1016/j.cardfail.2010.01.007.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Maniadakis N, Fragoulakis VMCSRCA. Economic evaluation of cardiac contractility modulation (CCM) therapy with the optimizer IVs in the management of heart failure patients. Int Cardiovasc Forum J. 2015;4:43–52.

    Article  Google Scholar 

  41. Rohde LE, Bertoldi EG, Goldraich L, Polanczyk CA. Cost-effectiveness of heart failure therapies. Nat Rev Cardiol. 2013;10(6):338–54. https://doi.org/10.1038/nrcardio.2013.60.

    Article  PubMed  Google Scholar 

  42. • Witte K, Hasenfuss G, Kloppe A, et al. Cost-effectiveness of a cardiac contractility modulation device in heart failure with normal QRS duration. ESC Heart Fail. 2019;6(6):1178–87. https://doi.org/10.1002/ehf2.12526This analysis shows that the use of CCM is likely to be cost effective in people with HFrEF, NYHA III, and a narrow QRS, providing important support for the European Society of Cardiology’s recommendations that CCM should be considered in these patients.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan B. Edelson.

Ethics declarations

Conflict of Interest

Jonathan B. Edelson, Michael V. Genuardi, and Pasquale Santangeli declare that they have no conflict of interest.

Edo Y. Birati received research support through the University of Pennsylvania from Impulse Dynamics and Medtronic Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edelson, J.B., Genuardi, M.V., Santangeli, P. et al. Cardiac Contractility Monitoring: an Important Therapy in the Treatment of Advanced Heart Failure. Curr Cardiol Rep 22, 81 (2020). https://doi.org/10.1007/s11886-020-01330-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-020-01330-0

Keywords

Navigation