Skip to main content

Advertisement

Log in

Cardiac Complications of Cancer Therapy: Pathophysiology, Identification, Prevention, Treatment, and Future Directions

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cardiotoxicity is an important complication of cancer therapy. With a significant improvement in the overall survival and prognosis of patients undergoing cancer therapy, cardiovascular toxicity of cancer therapy has become an important public health issue. Several well-established as well as newer anticancer therapies such as anthracyclines, trastuzumab, and other HER2 receptor blockers, antimetabolites, alkylating agents, tyrosine kinase inhibitors, angiogenesis inhibitors, checkpoint inhibitors, and thoracic irradiation are associated with significant cardiotoxicity.

Recent Findings

Cardiovascular imaging employing radionuclide imaging, echocardiography, and magnetic resonance imaging is helpful in early detection of the cardiotoxicity and prevention of overt heart failure. These techniques also provide important tools for understanding the mechanism of cardiotoxicity of these modalities, which would help develop strategies for the prevention of cardiac morbidity and mortality related to the use of these agents.

Summary

An understanding of the mechanism of the cardiotoxicity of cancer therapies can help prevent and treat their adverse cardiovascular consequences. Clinical implementation of algorithms based upon cardiac imaging and several non-imaging biomarkers can prevent cardiac morbidity and mortality associated with the use of cardiotoxic cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Siegel RL, Miller KD, Jemal A. Cancer statistics 2016. CA Cancer J Clin. 2016;66:7–30. An important resource for current cancer statistics

    Article  PubMed  Google Scholar 

  2. Reulen RC, Winter DL, Frobisher C, et al. Long-term cause-specific mortality among survivors of childhood cancer. JAMA. 2010;304:172–9.

    Article  CAS  PubMed  Google Scholar 

  3. Lipshultz SE, Adams MJ, Colan SD, et al. Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: pathophysiology, course, monitoring, management, prevention, and research directions: a scientific statement from the American Heart Association. Circulation. 2013;128:1927–95.

    Article  PubMed  Google Scholar 

  4. Albini A, Pennesi G, Donatelli F, et al. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102:14–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schwartz RG, Jain D, Storozynsky E. Traditional and novel methods to assess and prevent chemotherapy-related cardiac dysfunction noninvasively. J Nucl Cardiol. 2013;20:443–64.

    Article  PubMed  Google Scholar 

  6. •• Russell RR, Alexander J, Jain D, et al. The role and clinical effectiveness of multimodality imaging in the management of cardiac complications of cancer and cancer therapy. J Nucl Cardiol. 2016;23:856–84. doi:10.1007/s12350-016-0538-8. An important comprehensive recent article on cardiovascula issues in cancer patients

    Article  PubMed  Google Scholar 

  7. Yeh ETH, Tong AT, Lenihan DJ, et al. Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation. 2004;109:3122–31.

    Article  PubMed  Google Scholar 

  8. Volkova M, Russell R. Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev. 2011;7:214–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bristow MR, Thompson PD, Martin RP, et al. Early anthracycline cardiotoxicity. Am J Med. 1978;65:823–32.

    Article  CAS  PubMed  Google Scholar 

  10. Cardinale D, Colombo A, Bacchiani G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131:1981–8.

    Article  CAS  PubMed  Google Scholar 

  11. Xu X, Persson HL, Richardson DR. Molecular pharmacology of the interaction of anthracyclines with iron. Mol Pharmacol. 2005;68:261–71.

    CAS  PubMed  Google Scholar 

  12. Zhang S, Liu X, Bawa-Khalfe T, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18:1639–42.

    Article  PubMed  Google Scholar 

  13. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin. Cancer. 2003;97:2869–79.

    Article  CAS  PubMed  Google Scholar 

  14. Panjrath GS, Patel V, Valdiviezo CI, et al. Potentiation of doxorubicin cardiotoxicity by iron loading in a rodent model. J Am Coll Cardiol. 2007;49:2457–64.

    Article  CAS  PubMed  Google Scholar 

  15. Dazzi H, Kaufmann K, Follath F. Anthracycline-induced acute cardiotoxicity in adults treated for leukaemia. Analysis of the clinico-pathological aspects of documented acute anthracycline-induced cardiotoxicity in patients treated for acute leukaemia at the University Hospital of Zurich, Switzerland, between 1990 and 1996. Ann Oncol. 2001;12:963–6.

    Article  CAS  PubMed  Google Scholar 

  16. Lipshultz SE, Colan SD, Gelber RD, et al. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med. 1991;324:808–15.

    Article  CAS  PubMed  Google Scholar 

  17. Lipshultz SE, Lipsitz SR, Sallan SE, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol. 2005;23:2629–36.

    Article  CAS  PubMed  Google Scholar 

  18. Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91:710–7.

    Article  CAS  PubMed  Google Scholar 

  19. Miranda CJ, Makui H, Soares RJ, et al. Hfe deficiency increases susceptibility to cardiotoxicity and exacerbates changes in iron metabolism induced by doxorubicin. Blood. 2003;102:2574–80.

    Article  CAS  PubMed  Google Scholar 

  20. Alexander J, Dainiak N, Berger HJ, et al. Serial assessment of doxorubicin cardiotoxicity with quantitative radionuclide angiocardiography. N Engl J Med. 1979;300:278–83.

    Article  CAS  PubMed  Google Scholar 

  21. Choi BW, Berger HJ, Schwartz PE, et al. Serial radionuclide assessment of doxorubicin cardiotoxicity in cancer patients with abnormal baseline resting left ventricular performance. Am Heart J. 1983;106:638–43.

    Article  CAS  PubMed  Google Scholar 

  22. Mitani I, Jain D, Joska TM, Burtness B, Zaret BL. Doxorubicin cardiotoxicity: prevention of congestive heart failure with serial cardiac function monitoring with equilibrium radionuclide angiocardiography in the current era. J Nucl Cardiol. 2003;10:132–9.

    Article  PubMed  Google Scholar 

  23. Schwartz RG, McKenzie WB, Alexander J, et al. Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy: seven-year experience using serial radionuclide angiocardiography. Am J Med. 1987;82:1109–18.

    Article  CAS  PubMed  Google Scholar 

  24. Carver JR, Shapiro CL, Ng A, et al. American Society of Clinical Oncology clinical evidence review on the ongoing care of adult cancer survivors: cardiac and pulmonary late effects. J Clin Oncol. 2007;25:3991–4008.

    Article  CAS  PubMed  Google Scholar 

  25. Wojnowski L, Kulle B, Schirmer M, et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation. 2005;112:3754–62.

    Article  CAS  PubMed  Google Scholar 

  26. Mackey JR, Clemons M, Cote MA, et al. Cardiac management during adjuvant trastuzumab therapy: recommendations of the Canadian Trastuzumab Working Group. Curr Oncol. 2008;15:24–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marshall RC, Berger HJ, Reduto LA, et al. Variability in sequential measures of left ventricular performance assessed with radionuclide angiocardiography. Am J Cardiol. 1978;41:531–6.

    Article  CAS  PubMed  Google Scholar 

  28. Thavendiranathan P, Grant AD, Negishi T, et al. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013;61:77–84.

    Article  PubMed  Google Scholar 

  29. Walker J, Bhullar N, Fallah-Rad N, et al. Role of three-dimensional echocardiography in breast cancer: comparison with two-dimensional echocardiography, multiple-gated acquisition scans, and cardiac magnetic resonance imaging. J Clin Onc. 2010;28:3429–36.

    Article  Google Scholar 

  30. Mulvagh SL, Rakowski H, Vannan MA, et al. American Society of Echocardiography consensus statement on the clinical applications of ultrasonic contrast agents in echocardiography. J Am Soc Echocardiogr. 2008;21:1179–201.

    Article  PubMed  Google Scholar 

  31. Marchandise B, Schroeder E, Bosly A, et al. Early detection of doxorubicin cardiotoxicity: interest of Doppler echocardiographic analysis of left ventricular filling dynamics. Am Heart J. 1989;118:92–8.

    Article  CAS  PubMed  Google Scholar 

  32. Stoddard MF, Seeger J, Liddell NE, et al. Prolongation of isovolumetric relaxation time as assessed by Doppler echocardiography predicts doxorubicin-induced systolic dysfunction in humans. J Am Coll Cardiol. 1992;20:62–9.

    Article  CAS  PubMed  Google Scholar 

  33. Tassan-Mangina S, Codorean D, Metivier M, et al. Tissue Doppler imaging and conventional echocardiography after anthracycline treatment in adults: early and late alterations of left ventricular function during a prospective study. Eur J Echocardiogr. 2006;7:141–6.

    Article  PubMed  Google Scholar 

  34. • Mor-Avi V, Lang RM. Is echocardiography reliable for monitoring the adverse cardiac effects of chemotherapy? J Am Coll Cardiol. 2013;61:85–7. An important article describing the role and limitations of echocardiography in monitoring cardiac function in patients receiving cardiotoxic cancer therapy

    Article  PubMed  Google Scholar 

  35. •• Thavendiranathan P, Poulin F, Lim KD, et al. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63:2751–68. Important article describing the role of echocardiographic strain imaging for monitoring cardiotoxicity of cancer therapy

    Article  PubMed  Google Scholar 

  36. Sawaya H, Sebag IA, Plana JC, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;107:1375–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sawaya H, Sebag IA, Plana JC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circulation Cardiovascular Imaging. 2012;5:596–603.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cardinale D, Sandri MT. Role of biomarkers in chemotherapy-induced cardiotoxicity. Prog Cardiovasc Dis. 2010;53:121–9.

    Article  CAS  PubMed  Google Scholar 

  39. Dolci A, Dominici R, Cardinale D, et al. Biochemical markers for prediction of chemotherapy-induced cardiotoxicity: systematic review of the literature and recommendations for use. Am J Clin Pathol. 2008;130:688–95.

    Article  CAS  PubMed  Google Scholar 

  40. Fallah-Rad N, Walker JR, Wassef A, et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol. 2011;57:2263–70.

    Article  CAS  PubMed  Google Scholar 

  41. Jurcut R, Wildiers H, Ganame J, et al. Strain rate imaging detects early cardiac effects of pegylated liposomal doxorubicin as adjuvant therapy in elderly patients with breast cancer. J Am Soc Echocardiogr. 2008;21:1283–9.

    Article  PubMed  Google Scholar 

  42. Lipshultz SE, Miller TL, Lipsitz SR, et al. Continuous versus bolus infusion of doxorubicin in children with ALL: long-term cardiac outcomes. Pediatrics. 2012;130:1003–11. doi:10.1542/peds.2012-0727.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Palmieri C, Misra V, Januszewski A, et al. Multicenter experience of nonpegylated liposomal doxorubicin use in the management of metastatic breast cancer. Clin Breast Cancer. 2014 Apr;14(2):85–93. doi:10.1016/j.clbc.2013.10.011.

    Article  CAS  PubMed  Google Scholar 

  44. Children’s Oncology Group long-term follow up guidelines for survivors of childhood, adolescent and young adult cancer (version 4, Oct 2013). www.survivorshipguidelines.org/pdf/COG_LTFU_Guidelines_Appendix1_v4.pdf. pp. 25–26.

  45. Cardinale D, Colombo A, Lamantia G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55:213–20.

    Article  CAS  PubMed  Google Scholar 

  46. Voigt J, Sasha John M, Taylor A, et al. A reevaluation of the costs of heart failure and its implications for allocation of health resources in the United States. Clin Cardiol. 2014;37:312–21.

    Article  PubMed  Google Scholar 

  47. Tebbi CK, London WB, Friedman D, et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J Clin Oncol. 2007;25:493–500.

    Article  CAS  PubMed  Google Scholar 

  48. Keefe DL. Trastuzumab-associated cardiotoxicity. Cancer. 2002;95:1592–600.

    Article  CAS  PubMed  Google Scholar 

  49. Perik PJ, de Korte MA, van Veldhuisen DJ, et al. Cardiotoxicity associated with the use of trastuzumab in breast cancer patients. Expert Rev Anticancer Ther. 2007;7:1763–71.

    Article  CAS  PubMed  Google Scholar 

  50. Ewer MS, Vooletich MT, Durand JB, Woods ML, Davis JR, Valero V, et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol. 2005;23:7820–6.

    Article  CAS  PubMed  Google Scholar 

  51. Ewer SM, Ewer MS. Cardiotoxicity profile of trastuzumab. Drug Saf. 2008;31:459–67.

    Article  CAS  PubMed  Google Scholar 

  52. Hedhli N, Dobrucki LW, Kalinowski A, et al. Endothelial-derived neuregulin is an important mediator of ischaemia-induced angiogenesis and arteriogenesis. Cardiovasc Res. 2012;93:516–24.

    Article  CAS  PubMed  Google Scholar 

  53. Hedhli N, Huang Q, Kalinowski A, et al. Endothelium-derived neuregulin protects the heart against ischemic injury. Circulation. 2011.

  54. Panjrath GS, Jain D. Trastuzumab-induced cardiac dysfunction. Nucl Med Commun. 2007;28:69–73.

    Article  PubMed  Google Scholar 

  55. Curigliano G, Cardinale D, Suter T, et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO clinical practice guidelines. Ann Oncol. 2012;23(Suppl 7):vii155–66.

    Article  PubMed  Google Scholar 

  56. Gianni L, Pienkowski T, Im YH, et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13:25–32.

    Article  CAS  PubMed  Google Scholar 

  57. Blackwell KL, Burstein HJ, Storniolo AM, et al. Randomized study of lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J Clin Oncol. 2010;28:1124–30.

    Article  CAS  PubMed  Google Scholar 

  58. Behr TM, Behe M, Wormann B. Trastuzumab and breast cancer. N Engl J Med. 2001;345:995–6.

    Article  CAS  PubMed  Google Scholar 

  59. Nilsson G, Holmberg L, Garmo H, et al. Distribution of coronary artery stenosis after radiation for breast cancer. J Clin Oncol. 2012;30:380–6.

  60. de Forni M, Malet-Martino MC, Jaillais P, et al. Cardiotoxicity of high-dose continuous infusion fluorouracil: a prospective clinical study. J Clin Oncol. 1992;10:1795–801.

  61. McGale P, Darby SC, Hall P, et al. Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiotherapy and Oncology. 2011;100:167–75.

  62. Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368:987–98.

  63. Marks LB, Yu X, Prosnitz RG, et al. The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys. 2005;63:214–23.

  64. Seddon B, Cook A, Gothard L, et al. Detection of defects in myocardial perfusion imaging in patients with early breast cancer treated with radiotherapy. Radiotherapy and Oncology. 2002;64:53–63.

  65. Correa CR, Litt HI, Hwang WT, et al. Coronary artery findings after left-sided compared with right-sided radiation treatment for early-stage breast cancer. J Clin Oncol. 2007;25:3031–7.

  66. Gabriels K, Hoving S, Seemann I, et al. Local heart irradiation of ApoE(-/-) mice induces microvascular and endocardial damage and accelerates coronary atherosclerosis. Radiotherapy and Oncology. 2012;105:358–64.

  67. Saif MW, Shah MM, Shah AR. Fluoropyrimidine-associated cardiotoxicity: revisited. Expert Opin Drug Saf. 2009;8:191–202.

    Article  CAS  PubMed  Google Scholar 

  68. Anand AJ. Fluorouracil cardiotoxicity. Ann Pharmacother. 1994;28:374–8.

    Article  CAS  PubMed  Google Scholar 

  69. Berliner S, Rahima M, Sidi Y, et al. Acute coronary events following cisplatin-based chemotherapy. Cancer Investig. 1990;8:583–6.

    Article  CAS  Google Scholar 

  70. Frickhofen N, Beck FJ, Jung B, et al. Capecitabine can induce acute coronary syndrome similar to 5-fluorouracil. Ann Oncol. 2002;13:797–801.

    Article  CAS  PubMed  Google Scholar 

  71. Force T, Kolaja KL. Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nat Rev Drug Discov. 2011;10:111–26.

    Article  CAS  PubMed  Google Scholar 

  72. Schmidinger M, Zielinski CC, Vogl UM, et al. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2008;26:5204–12.

    Article  PubMed  Google Scholar 

  73. Chu TF, Rupnick MA, Kerkela R, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370:2011–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chintalgattu V, Rees ML, Culver JC, et al. Coronary microvascular pericytes are the cellular target of sunitinib malate-induced cardiotoxicity. Sci Transl Med. 2013;5:187ra69.

    Article  PubMed  Google Scholar 

  75. Saito K, Takeda K, Imanaka-Yoshida K, et al. Assessment of fatty acid metabolism in taxan-induced myocardial damage with iodine-123 BMIPP SPECT: comparative study with myocardial perfusion, left ventricular function, and histopathological findings. Ann Nucl Med. 2003;17:481–8.

    Article  CAS  PubMed  Google Scholar 

  76. Rowinsky EK, McGuire WP, Guarnieri T, et al. Cardiac disturbances during the administration of taxol. J Clin Oncol. 1991;9:1704–12.

    Article  CAS  PubMed  Google Scholar 

  77. Dutcher J, Atkins MB, Margolin K, et al. Kidney cancer: the Cytokine Working Group experience (1986-2001): part II. Management of IL-2 toxicity and studies with other cytokines. Med Oncol. 2001;18:209–19.

    Article  CAS  PubMed  Google Scholar 

  78. Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17:2105–16.

    Article  CAS  PubMed  Google Scholar 

  79. Wolchok JD. PD-1 blockers. Cell. 2015;162:93.

    Article  Google Scholar 

  80. Sunshine J, Taube JM. PD-1/PD-L1 inhibitors. Curr Opinions Pharm. 2015;23:32–8.

    Article  CAS  Google Scholar 

  81. Lee JY, Lee HT, Shin W, et al. Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy. Nat Commun. 2016;7:13354. doi:10.1038/ncomms13354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ryder M, Callahan M, Postow MA, et al. Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution. Endocr Relat Cancer. 2014;21:371–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yu C, Chopra IJ, Ha E. A novel melanoma therapy stirs up a storm: ipilimumab-induced thyrotoxicosis. Endocrinol Diabetes Metab Case Rep. 2015;2015:140092.

    PubMed  PubMed Central  Google Scholar 

  84. • Johnson DB, Balko JM, Compton ML, et al. Fulminant myocarditis with combined checkpoint inhibitors. N Engl J Med. 2016;375:1749–55. A recent article describing catastrophic cardiac complications in patients undergoing therapy with a highly promising new group of anticancer medications. The use of this group of medicaitons is likely to grow exponentially in the coming years

    Article  PubMed  Google Scholar 

  85. •• Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375:1457–67. An excellent recent review article describing cardiotoxicity of newer targeted cancer therapies

    Article  CAS  PubMed  Google Scholar 

  86. Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging. 2010;3:623–40.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diwakar Jain.

Ethics declarations

Conflict of Interest

Diwakar Jain reports grants from Regeneron, Sanofi-Aventis; grants and personal fees from Astellas; and grants from GE.

Raymond R. Russell reports personal fees from Novartis Institutes for Biomedical Research.

Ronald G. Schwartz, Gurusher S. Panjrath, and Wilbert Aronow declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nuclear Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, D., Russell, R.R., Schwartz, R.G. et al. Cardiac Complications of Cancer Therapy: Pathophysiology, Identification, Prevention, Treatment, and Future Directions. Curr Cardiol Rep 19, 36 (2017). https://doi.org/10.1007/s11886-017-0846-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-017-0846-x

Keywords

Navigation