Skip to main content

Advertisement

Log in

The role and clinical effectiveness of multimodality imaging in the management of cardiac complications of cancer and cancer therapy

  • ASNC Information Statement
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

With the increasing number of individuals living with a current or prior diagnosis of cancer, it is important for the cardiovascular specialist to recognize the various complications of cancer and its therapy on the cardiovascular system. This is true not only for established cancer therapies, such as anthracyclines, that have well established cardiovascular toxicities, but also for the new targeted therapies that can have “off target” effects in the heart and vessels. The purpose of this informational statement is to provide cardiologists, cardiac imaging specialists, cardio-oncologists, and oncologists an understanding of how multimodality imaging may be used in the diagnosis and management of the cardiovascular complications of cancer therapy. In addition, this document is meant to provide useful general information concerning the cardiovascular complications of cancer and cancer therapy as well as established recommendations for the monitoring of specific cardiotoxic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

CHF:

Congestive heart failure

ERNA:

Equilibrium radionuclide angiocardiography

ESVI:

End-systolic volume index

FDG F-18:

Fluorodeoxyglucose

GBPS:

Gated blood pool SPECT

LVEF:

Left ventricular ejection fraction

mIBG:

Metaiodobenzylguanidine

MUGA:

Multi-gated acquisition scan

PET:

Positron emission tomography

TKIs:

Tyrosine kinase inhibitors

References

  1. DeSantis CE, Lin CC, Mariotto AB, et al Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 2014;64:252-71.

    Article  PubMed  Google Scholar 

  2. Felker GM, Thompson RE, Hare JM, et al Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 2000;342:1077-84.

    Article  CAS  PubMed  Google Scholar 

  3. Yoon GJ, Telli ML, Kao DP, Matsuda KY, Carlson RW, Witteles RM. Left ventricular dysfunction in patients receiving cardiotoxic cancer therapies are clinicians responding optimally? J Am Coll Cardiol 2010;56:1644-50.

    Article  PubMed  Google Scholar 

  4. Chavez-MacGregor M, Niu J, Zhang N, et al Cardiac monitoring during adjuvant trastuzumab-based chemotherapy among older patients with breast cancer. J Clin Oncol 2015;33:2176-83.

    Article  CAS  PubMed  Google Scholar 

  5. Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan DM. Cardiotoxicity of anticancer drugs: The need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst 2010;102:14-25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reulen RC, Winter DL, Frobisher C, et al Long-term cause-specific mortality among survivors of childhood cancer. JAMA 2010;304:172-9.

    Article  CAS  PubMed  Google Scholar 

  7. Colzani E, Liljegren A, Johansson AL, et al Prognosis of patients with breast cancer: Causes of death and effects of time since diagnosis, age, and tumor characteristics. J Clin Oncol 2011;29:4014-21.

    Article  PubMed  Google Scholar 

  8. Patnaik JL, Byers T, DiGuiseppi C, Dabelea D, Denberg TD. Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer: A retrospective cohort study. Breast Cancer Res 2011;13:R64.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hanrahan EO, Gonzalez-Angulo AM, Giordano SH, et al Overall survival and cause-specific mortality of patients with stage T1a, bN0M0 breast carcinoma. J Clin Oncol 2007;25:4952-60.

    Article  PubMed  Google Scholar 

  10. Hayat MJ, Howlader N, Reichman ME, Edwards BK. Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist 2007;12:20-37.

    Article  PubMed  Google Scholar 

  11. Lipshultz SE, Adams MJ, Colan SD, et al Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: Pathophysiology, course, monitoring, management, prevention, and research directions: A scientific statement from the American Heart Association. Circulation 2013;128:1927-95.

    Article  PubMed  Google Scholar 

  12. Carver JR, Shapiro CL, Ng A, et al American Society of Clinical Oncology clinical evidence review on the ongoing care of adult cancer survivors: Cardiac and pulmonary late effects. J Clin Oncol 2007;25:3991-4008.

    Article  CAS  PubMed  Google Scholar 

  13. Schwartz RG, Jain D, Storozynsky E. Traditional and novel methods to assess and prevent chemotherapy-related cardiac dysfunction noninvasively. J Nucl Cardiol 2013;20:443-64.

    Article  PubMed  Google Scholar 

  14. Alexander J, Dainiak N, Berger HJ, et al Serial assessment of doxorubicin cardiotoxicity with quantitative radionuclide angiocardiography. N Engl J Med 1979;300:278-83.

    Article  CAS  PubMed  Google Scholar 

  15. Billingham ME, Mason JW, Bristow MR, Daniels JR. Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treat Rep 1978;62:865-72.

    CAS  PubMed  Google Scholar 

  16. Choi BW, Berger HJ, Schwartz PE, et al Serial radionuclide assessment of doxorubicin cardiotoxicity in cancer patients with abnormal baseline resting left ventricular performance. Am Heart J 1983;106:638-43.

    Article  CAS  PubMed  Google Scholar 

  17. Lipshultz SE, Colan SD, Gelber RD, Perez-Atayde AR, Sallan SE, Sanders SP. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med 1991;324:808-15.

    Article  CAS  PubMed  Google Scholar 

  18. Lipshultz SE, Lipsitz SR, Sallan SE, Dalton VM, Mone SM, Gelber RD, et al Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol 2005;23:2629-36.

    Article  CAS  PubMed  Google Scholar 

  19. Mitani I, Jain D, Joska TM, Burtness B, Zaret BL. Doxorubicin cardiotoxicity: Prevention of congestive heart failure with serial cardiac function monitoring with equilibrium radionuclide angiocardiography in the current era. J Nucl Cardiol 2003;10:132-9.

    Article  PubMed  Google Scholar 

  20. Schwartz RG, McKenzie WB, Alexander J, et al Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy: Seven-year experience using serial radionuclide angiocardiography. Am J Med 1987;82:1109-18.

    Article  CAS  PubMed  Google Scholar 

  21. Steinherz LJ, Steinherz PG, Tan CT, Heller G, Murphy ML. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA 1991;266:1672-7.

    Article  CAS  PubMed  Google Scholar 

  22. Yeh ETH, Tong AT, Lenihan DJ, et al Cardiovascular complications of cancer therapy: Diagnosis, pathogenesis, and management. Circulation 2004;109:3122-31.

    Article  PubMed  Google Scholar 

  23. Zhang S, Liu X, Bawa-Khalfe T, et al Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 2012;18:1639-42.

    Article  PubMed  CAS  Google Scholar 

  24. Volkova M, Russell R. Anthracycline cardiotoxicity: Prevalence, pathogenesis and treatment. Curr Cardiol Rev 2011;7:214-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bristow MR, Thompson PD, Martin RP, Mason JW, Billingham ME, Harrison DC. Early anthracycline cardiotoxicity. Am J Med 1978;65:823-32.

    Article  CAS  PubMed  Google Scholar 

  26. Dazzi H, Kaufmann K, Follath F. Anthracycline-induced acute cardiotoxicity in adults treated for leukaemia. Analysis of the clinico-pathological aspects of documented acute anthracycline-induced cardiotoxicity in patients treated for acute leukaemia at the University Hospital of Zurich, Switzerland, between 1990 and 1996. Ann Oncol 2001;12:963-6.

    Article  CAS  PubMed  Google Scholar 

  27. Cardinale D, Colombo A, Bacchiani G, et al Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 2015;131:1981-8.

    Article  CAS  PubMed  Google Scholar 

  28. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin. Cancer 2003;97:2869-79.

    Article  CAS  PubMed  Google Scholar 

  29. Von Hoff DD, Layard MW, Basa P, et al Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 1979;91:710-7.

    Article  Google Scholar 

  30. Panjrath GS, Patel V, Valdiviezo CI, Narula N, Narula J, Jain D. Potentiation of Doxorubicin cardiotoxicity by iron loading in a rodent model. J Am Coll Cardiol 2007;49:2457-64.

    Article  CAS  PubMed  Google Scholar 

  31. Wojnowski L, Kulle B, Schirmer M, et al NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation 2005;112:3754-62.

    Article  CAS  PubMed  Google Scholar 

  32. Mackey JR, Clemons M, Cote MA, et al Cardiac management during adjuvant trastuzumab therapy: Recommendations of the Canadian Trastuzumab Working Group. Curr Oncol 2008;15:24-35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ewer MS, Vooletich MT, Durand JB, et al Reversibility of trastuzumab-related cardiotoxicity: New insights based on clinical course and response to medical treatment. J Clin Oncol 2005;23:7820-6.

    Article  CAS  PubMed  Google Scholar 

  34. Hedhli N, Dobrucki LW, Kalinowski A, et al Endothelial-derived neuregulin is an important mediator of ischaemia-induced angiogenesis and arteriogenesis. Cardiovasc Res 2012;93:516-24.

    Article  CAS  PubMed  Google Scholar 

  35. Hedhli N, Huang Q, Kalinowski A, et al Endothelium-derived neuregulin protects the heart against ischemic injury. Circulation 2011;123:2254-62. doi:10.1161/CIRCULATIONAHA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Panjrath GS, Jain D. Trastuzumab-induced cardiac dysfunction. Nucl Med Commun 2007;28:69-73.

    Article  PubMed  Google Scholar 

  37. Curigliano G, Cardinale D, Suter T, et al Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol 2012;23 Suppl 7:vii155-66.

  38. Hooning MJ, Botma A, Aleman BM, et al Long-term risk of cardiovascular disease in 10-year survivors of breast cancer. J Natl Cancer Inst 2007;99:365-75.

    Article  PubMed  Google Scholar 

  39. McGale P, Darby SC, Hall P, et al Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol 2011;100:167-75.

    Article  PubMed  Google Scholar 

  40. Marks LB, Yu X, Prosnitz RG, et al The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys 2005;63:214-23.

    Article  PubMed  Google Scholar 

  41. Seddon B, Cook A, Gothard L, Salmon E, Latus K, Underwood SR, et al Detection of defects in myocardial perfusion imaging in patients with early breast cancer treated with radiotherapy. Radiother Oncol 2002;64:53-63.

    Article  PubMed  Google Scholar 

  42. Correa CR, Litt HI, Hwang WT, Ferrari VA, Solin LJ, Harris EE. Coronary artery findings after left-sided compared with right-sided radiation treatment for early-stage breast cancer. J Clin Oncol 2007;25:3031-7.

    Article  PubMed  Google Scholar 

  43. Gayed IW, Liu HH, Wei X, et al Patterns of cardiac perfusion abnormalities after chemoradiotherapy in patients with lung cancer. J Thorac Oncol 2009;4:179-84.

    Article  PubMed  Google Scholar 

  44. Gabriels K, Hoving S, Seemann I, et al Local heart irradiation of ApoE(−/−) mice induces microvascular and endocardial damage and accelerates coronary atherosclerosis. Radiother Oncol 2012;105:358-64.

    Article  PubMed  Google Scholar 

  45. Seemann I, Gabriels K, Visser NL, et al Irradiation induced modest changes in murine cardiac function despite progressive structural damage to the myocardium and microvasculature. Radiother Oncol 2012;103:143-50.

    Article  PubMed  Google Scholar 

  46. Giordano SH, Kuo YF, Freeman JL, Buchholz TA, Hortobagyi GN, Goodwin JS. Risk of cardiac death after adjuvant radiotherapy for breast cancer. J Natl Cancer Inst 2005;97:419-24.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Patt DA, Goodwin JS, Kuo YF, et al Cardiac morbidity of adjuvant radiotherapy for breast cancer. J Clin Oncol 2005;23:7475-82.

    Article  PubMed  Google Scholar 

  48. Yu X, Prosnitz RR, Zhou S, et al Symptomatic cardiac events following radiation therapy for left-sided breast cancer: Possible association with radiation therapy-induced changes in regional perfusion. Clin Breast Cancer 2003;4:193-7.

    PubMed  Google Scholar 

  49. Lancellotti P, Nkomo VT, Badano LP, et al Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: A report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr 2013;26:1013-32.

    Article  PubMed  Google Scholar 

  50. Van Kriekinge SD, Berman DS, Germano G. Automatic quantification of left ventricular ejection fraction from gated blood pool SPECT. J Nucl Cardiol 1999;6:498-506.

    Article  PubMed  Google Scholar 

  51. Gradishar WJ, Vokes EE. 5-Fluorouracil cardiotoxicity: A critical review. Ann Oncol 1990;1:409-14.

    CAS  PubMed  Google Scholar 

  52. de Forni M, Malet-Martino MC, Jaillais P, et al Cardiotoxicity of high-dose continuous infusion fluorouracil: A prospective clinical study. J Clin Oncol 1992;10:1795-801.

    PubMed  Google Scholar 

  53. Saif MW, Shah MM, Shah AR. Fluoropyrimidine-associated cardiotoxicity: Revisited. Expert Opin Drug Saf 2009;8:191-202.

    Article  CAS  PubMed  Google Scholar 

  54. Anand AJ. Fluorouracil cardiotoxicity. Ann Pharmacother 1994;28:374-8.

    CAS  PubMed  Google Scholar 

  55. Berliner S, Rahima M, Sidi Y, Teplitsky Y, et al Acute coronary events following cisplatin-based chemotherapy. Cancer Invest 1990;8:583-6.

    Article  CAS  PubMed  Google Scholar 

  56. Frickhofen N, Beck FJ, Jung B, Fuhr HG, Andrasch H, Sigmund M. Capecitabine can induce acute coronary syndrome similar to 5-fluorouracil. Ann Oncol 2002;13:797-801.

    Article  CAS  PubMed  Google Scholar 

  57. Schmidinger M, Zielinski CC, Vogl UM, et al Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 2008;26:5204-12.

  58. Chu TF, Rupnick MA, Kerkela R, et al Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 2007;370:2011-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hahn VS, Lenihan DJ, Ky B. Cancer therapy-induced cardiotoxicity: Basic mechanisms and potential cardioprotective therapies. J Am Heart Assoc 2014;3:e000665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Chintalgattu V, Rees ML, Culver JC, et al Coronary microvascular pericytes are the cellular target of sunitinib malate-induced cardiotoxicity. Sci Transl Med 2013;5:187ra69.

  61. Force T, Kolaja KL. Cardiotoxicity of kinase inhibitors: The prediction and translation of preclinical models to clinical outcomes. Nat Rev Drug Discov 2011;10:111-26.

    Article  CAS  PubMed  Google Scholar 

  62. Rowinsky EK, McGuire WP, Guarnieri T, Fisherman JS, Christian MC, Donehower RC. Cardiac disturbances during the administration of taxol. J Clin Oncol 1991;9:1704-12.

    CAS  PubMed  Google Scholar 

  63. Saito K, Takeda K, Imanaka-Yoshida K, Imai H, Sekine T, Kamikura Y. Assessment of fatty acid metabolism in taxan-induced myocardial damage with iodine-123 BMIPP SPECT: Comparative study with myocardial perfusion, left ventricular function, and histopathological findings. Ann Nucl Med 2003;17:481-8.

    Article  CAS  PubMed  Google Scholar 

  64. Schwartz RN, Stover L, Dutcher J. Managing toxicities of high-dose interleukin-2. Oncology (Williston Park) 2002;16:11-20.

    PubMed  Google Scholar 

  65. Dutcher J, Atkins MB, Margolin K, et al Kidney cancer: The Cytokine Working Group experience (1986-2001): Part II. Management of IL-2 toxicity and studies with other cytokines. Med Oncol 2001;18:209-19.

    Article  CAS  PubMed  Google Scholar 

  66. Atkins MB, Lotze MT, Dutcher JP, et al High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: Analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 1999;17:2105-16.

    CAS  PubMed  Google Scholar 

  67. Ryder M, Callahan M, Postow MA, Wolchok J, Fagin JA. Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: A comprehensive retrospective review from a single institution. Endocr Relat Cancer 2014;21:371-81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yu C, Chopra IJ, Ha E. A novel melanoma therapy stirs up a storm: Ipilimumab-induced thyrotoxicosis. Endocrinol Diabetes Metab Case Rep 2015;2015:140092.

    PubMed  PubMed Central  Google Scholar 

  69. Wackers FJ, Berger HJ, Johnstone DE, et al Multiple gated cardiac blood pool imaging for left ventricular ejection fraction: Validation of the technique and assessment of variability. Am J Cardiol 1979;43:1159-66.

    Article  CAS  PubMed  Google Scholar 

  70. Corbett JR, Akinboboye OO, Bacharach SL, et al Equilibrium radionuclide angiocardiography. J Nucl Cardiol 2006;13:e56-79.

    Article  PubMed  Google Scholar 

  71. Marshall RC, Berger HJ, Reduto LA, Gottschalk A, Zaret BL. Variability in sequential measures of left ventricular performance assessed with radionuclide angiocardiography. Am J Cardiol 1978;41:531-6.

    Article  CAS  PubMed  Google Scholar 

  72. Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popovic ZB, Marwick TH. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: Application to patients undergoing cancer chemotherapy. J Am Coll Cardiol 2013;61:77-84.

    Article  PubMed  Google Scholar 

  73. Walker J, Bhullar N, Fallah-Rad N, et al Role of three-dimensional echocardiography in breast cancer: Comparison with two-dimensional echocardiography, multiple-gated acquisition scans, and cardiac magnetic resonance imaging. J Clin Oncol 2010;28:3429-36.

    Article  PubMed  Google Scholar 

  74. de Geus-Oei LF, Mavinkurve-Groothuis AM, Bellersen L, et al Scintigraphic techniques for early detection of cancer treatment-induced cardiotoxicity. J Nucl Med 2011;52:560-71.

    PubMed  Google Scholar 

  75. Tassan-Mangina S, Codorean D, Metivier M, et al Tissue Doppler imaging and conventional echocardiography after anthracycline treatment in adults: Early and late alterations of left ventricular function during a prospective study. Eur J Echocardiogr 2006;7:141-6.

    Article  PubMed  Google Scholar 

  76. Palmeri ST, Bonow RO, Myers CE, et al Prospective evaluation of doxorubicin cardiotoxicity by rest and exercise radionuclide angiography. Am J Cardiol 1986;58:607-13.

    Article  CAS  PubMed  Google Scholar 

  77. Groch MW, DePuey EG, Belzberg AC, et al Planar imaging versus gated blood-pool SPECT for the assessment of ventricular performance: A multicenter study. J Nucl Med 2001;42:1773-9.

    CAS  PubMed  Google Scholar 

  78. Adachi I, Akagi H, Umeda T, et al Gated blood pool SPECT improves reproducibility of right and left ventricular Fourier phase analysis in radionuclide angiography. Ann Nucl Med 2003;17:711-6.

    Article  PubMed  Google Scholar 

  79. Lefrak E, Pitha J, Rosenheim S, et al A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 1973;32:302-14.

    Article  CAS  PubMed  Google Scholar 

  80. Clements IP, Brinkmann B, Mullan BP, O’Connor MK, Breen JF. MCGregor CG. Operator-interactive method for simultaneous measurement of left and right ventricular volumes and ejection fraction by tomographic electrocardiography-gated blood pool radionuclide ventriculography. J Nucl Cardiol 2006;13:50-63.

    Article  PubMed  Google Scholar 

  81. Daou D, Harel F, Helal BO, et al Electrocardiographically gated blood-pool SPECT and left ventricular function: Comparative value of 3 methods for ejection fraction and volume estimation. J Nucl Med 2001;42:1043-9.

    CAS  PubMed  Google Scholar 

  82. Jensen MM, Schmidt U, Huang C, Zerahn B. Gated tomographic radionuclide angiography using cadmium-zinc-telluride detector gamma camera; comparison to traditional gamma cameras. J Nucl Cardiol 2014;21:384-96.

    Article  PubMed  Google Scholar 

  83. Cottin Y, Touzery C, Coudert B, et al Impairment of diastolic function during short-term anthracycline chemotherapy. Br Heart J 1995;73:61-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cottin Y, Touzery C, Dalloz F, et al Comparison of epirubicin and doxorubicin cardiotoxicity induced by low doses: Evolution of the diastolic and systolic parameters studied by radionuclide angiography. Clin Cardiol 1998;21:665-70.

    Article  CAS  PubMed  Google Scholar 

  85. Schwartz RG, Venci N. Can serial changes of diastolic dysfunction signal incremental risk of chemotherapy-induced heart failure missed by the timing of declining LV ejection fraction? J Nucl Cardiol 2015. doi:10.1007/s12350-015-0194-4.

    Google Scholar 

  86. Gerber TC, Gibbons RJ. Weighing the risks and benefits of cardiac imaging with ionizing radiation. JACC Cardiovasc Imaging 2010;3:528-35.

    Article  PubMed  Google Scholar 

  87. Fiechter M, Stehli J, Fuchs TA, Dougoud S, Gaemperli O, Kaufmann PA. Impact of cardiac magnetic resonance imaging on human lymphocyte DNA integrity. Eur Heart J 2013;34:2340-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee WH, Nguyen P, Hu S, et al Variable activation of the DNA damage response pathways in patients undergoing single-photon emission computed tomography myocardial perfusion imaging. Circ Cardiovasc Imaging 2015;8:e002851. doi:10.1161/CIRCIMAGING.114.002851.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Mor-Avi V, Lang RM. Is echocardiography reliable for monitoring the adverse cardiac effects of chemotherapy? J Am Coll Cardiol 2013;61:85-7.

    Article  PubMed  Google Scholar 

  90. Mulvagh SL, Rakowski H, Vannan MA, et al American Society of Echocardiography Consensus Statement on the Clinical Applications of Ultrasonic Contrast Agents in Echocardiography. J Am Soc Echocardiogr 2008;21:1179-201; quiz 281.

  91. Banchs J, Jefferies JL, Plana JC, Hundley WG. Imaging for cardiotoxicity in cancer patients. Tex Heart Inst J 2011;38:268-9.

    PubMed  PubMed Central  Google Scholar 

  92. Marchandise B, Schroeder E, Bosly A, et al Early detection of doxorubicin cardiotoxicity: Interest of Doppler echocardiographic analysis of left ventricular filling dynamics. Am Heart J 1989;118:92-8.

    Article  CAS  PubMed  Google Scholar 

  93. Stoddard MF, Seeger J, Liddell NE, Hadley TJ, Sullivan DM, Kupersmith J. Prolongation of isovolumetric relaxation time as assessed by Doppler echocardiography predicts doxorubicin-induced systolic dysfunction in humans. J Am Coll Cardiol 1992;20:62-9.

    Article  CAS  PubMed  Google Scholar 

  94. Civelli M, Cardinale D, Martinoni A, et al Early reduction in left ventricular contractile reserve detected by dobutamine stress echo predicts high-dose chemotherapy-induced cardiac toxicity. Int J Cardiol 2006;111:120-6.

    Article  PubMed  Google Scholar 

  95. Plana JC, Galderisi M, Barac A, et al Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: A report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2014;27:911-39.

    Article  PubMed  Google Scholar 

  96. Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: A systematic review. J Am Coll Cardiol 2014;63:2751-68.

    Article  PubMed  Google Scholar 

  97. Sawaya H, Sebag IA, Plana JC, et al Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol 2011;107:1375-80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sawaya H, Sebag IA, Plana JC, et al Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging 2012;5:596-603.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Cardinale D, Sandri MT. Role of biomarkers in chemotherapy-induced cardiotoxicity. Prog Cardiovasc Dis 2010;53:121-9.

    Article  CAS  PubMed  Google Scholar 

  100. Dolci A, Dominici R, Cardinale D, Sandri MT, Panteghini M. Biochemical markers for prediction of chemotherapy-induced cardiotoxicity: Systematic review of the literature and recommendations for use. Am J Clin Pathol 2008;130:688-95.

    Article  CAS  PubMed  Google Scholar 

  101. Fallah-Rad N, Walker JR, Wassef A, et al The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol 2011;57:2263-70.

    Article  CAS  PubMed  Google Scholar 

  102. Jurcut R, Wildiers H, Ganame J, et al Strain rate imaging detects early cardiac effects of pegylated liposomal Doxorubicin as adjuvant therapy in elderly patients with breast cancer. J Am Soc Echocardiogr 2008;21:1283-9.

    Article  PubMed  Google Scholar 

  103. Hendel RC, Patel MR, Kramer CM, et al ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: A report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 2006;48:1475-97.

    Article  PubMed  Google Scholar 

  104. Zagrosek A, Abdel-Aty H, Boye P, Wassmuth R, Messroghli D, Utz W, et al Cardiac magnetic resonance monitors reversible and irreversible myocardial injury in myocarditis. JACC Cardiovasc Imaging 2009;2:131-8.

    Article  PubMed  Google Scholar 

  105. Fallah-Rad N, Lytwyn M, Fang T, Kirkpatrick I, Jassal DS. Delayed contrast enhancement cardiac magnetic resonance imaging in trastuzumab induced cardiomyopathy. J Cardiovasc Magn Reson 2008;10:5.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lightfoot JC, D’Agostino RB Jr, Hamilton CA, et al Novel approach to early detection of doxorubicin cardiotoxicity by gadolinium-enhanced cardiovascular magnetic resonance imaging in an experimental model. Circ Cardiovasc Imaging 2010;3:550-8.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Corapcioglu F, Sarper N, Berk F, Sahin T, Zengin E, Demir H. Evaluation of anthracycline-induced early left ventricular dysfunction in children with cancer: A comparative study with echocardiography and multigated radionuclide angiography. Pediatr Hematol Oncol 2006;23:71-80.

    Article  CAS  PubMed  Google Scholar 

  108. Jensen BV, Skovsgaard T, Nielsen SL. Functional monitoring of anthracycline cardiotoxicity: A prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol 2002;13:699-709.

    Article  CAS  PubMed  Google Scholar 

  109. Cardinale D, Colombo A, Lamantia G, et al Anthracycline-induced cardiomyopathy: Clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol 2010;55:213-20.

    Article  CAS  PubMed  Google Scholar 

  110. Voigt J, John MS, Taylor A, Krucoff M, Reynolds MR, Gibson CM. A reevaluation of the costs of heart failure and its implications for allocation of health resources in the United States. Clin Cardiol 2014;37:312-21

  111. Lestuzzi C, Vaccher E, Talamini R, et al Effort myocardial ischemia during chemotherapy with 5-fluorouracil: An underestimated risk. Ann Oncol 2014;25:1059-64.

    Article  CAS  PubMed  Google Scholar 

  112. El Fadl MHA, Bagai RK, Spiro TP, Daw HA. 5-Fluorouracil-induced cardiotoxicity during chemotherapy for adenocarcinoma of the small bowel. Gastrointest Cancer Res 2009;3:167-70

  113. Heidenreich PA, Kapoor JR. Radiation induced heart disease: Systemic disorders in heart disease. Heart 2009;95:252-8.

    Article  PubMed  Google Scholar 

  114. Shankar SM, Marina N, Hudson MM, Hodgson DC, Adams MJ, Landier W, et al Monitoring for cardiovascular disease in survivors of childhood cancer: Report from the Cardiovascular Disease Task Force of the Children’s Oncology Group. Pediatrics 2008;121:e387-96.

    Article  PubMed  Google Scholar 

  115. Campbell BA, Voss N, Pickles T, et al Involved-nodal radiation therapy as a component of combination therapy for limited-stage Hodgkin’s lymphoma: A question of field size. J Clin Oncol 2008;26:5170-4.

    Article  PubMed  Google Scholar 

  116. Hughes S, Liong J, Miah A, et al A brief report on the safety study of induction chemotherapy followed by synchronous radiotherapy and cetuximab in stage III non-small cell lung cancer (NSCLC): SCRATCH study. J Thorac Oncol 2008;3:648-51.

    Article  PubMed  Google Scholar 

  117. Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging 2010;3:623-40.

    Article  PubMed  Google Scholar 

  118. Burke A. Primary malignant cardiac tumors. Semin Diagn Pathol 2008;25:39-46.

    Article  PubMed  Google Scholar 

  119. Burke A, Virmani R. Tumors of the heart and the great vessels. Atlas of tumor pathology. Washington, DC: Armed Forces Institute of Pathology 1996.

  120. von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: Current applications and future directions. Radiology 2006;238:405-22.

    Article  Google Scholar 

  121. Meng Q, Lai H, Lima J, Tong W, Qian Y, Lai S. Echocardiographic and pathologic characteristics of primary cardiac tumors: A study of 149 cases. Int J Cardiol 2002;84:69-75.

    Article  PubMed  Google Scholar 

  122. Best AK, Dobson RL, Ahmad AR. Best cases from the AFIP: Cardiac angiosarcoma. Radiographics 2003;23 Spec No:S141-5.

  123. Butany J, Nair V, Naseemuddin A, Nair GM, Catton C, Yau T. Cardiac tumours: Diagnosis and management. Lancet Oncol 2005;6:219-28.

    Article  PubMed  Google Scholar 

  124. Falk RH. Diagnosis and management of the cardiac amyloidoses. Circulation 2005;112:2047-60.

    Article  PubMed  Google Scholar 

  125. Falk RH, Dubrey SW. Amyloid heart disease. Prog Cardiovasc Dis 2010;52:347-61.

    Article  PubMed  Google Scholar 

  126. Banypersad SM, Moon JC, Whelan C, Hawkins PN, Wechalekar AD. Updates in cardiac amyloidosis: A review. J Am Heart Assoc 2012;1:e000364.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Aktolun C, Bayhan H, Kir M. Clinical experience with Tc-99 m MIBI imaging in patients with malignant tumors. Preliminary results and comparison with Tl-201. Clin Nucl Med 1992;17:171-6.

    Article  CAS  PubMed  Google Scholar 

  128. Coleman RE. Single photon emission computed tomography and positron emission tomography in cancer imaging. Cancer 1991;67:1261-70.

    Article  CAS  PubMed  Google Scholar 

  129. Yigitbasi OG, Tutus A, Bozdemir K, Nardali M, Guney E. 201Tl imaging for differentiating between malignant and benign neck masses. Nucl Med Commun 1998;19:555-60.

    Article  CAS  PubMed  Google Scholar 

  130. Ruggiero NJ 2nd, Doherty JU, Ferrari VA, Hansen CL. Myocardial perfusion defect caused by intramyocardial lipoma. J Nucl Cardiol 2008;15:286-9.

    Article  PubMed  Google Scholar 

  131. Mansi L, Rambaldi PF, Cuccurullo V, et al Diagnostic and prognostic role of 99 mTc-Tetrofosmin in breast cancer. Q J Nucl Med 1997;41:239-50.

    CAS  PubMed  Google Scholar 

  132. Williams KA, Hill KA, Sheridan CM. Noncardiac findings on dual-isotope myocardial perfusion SPECT. J Nucl Cardiol 2003;10:395-402.

    Article  PubMed  Google Scholar 

  133. Fletcher JW, Djulbegovic B, Soares HP, et al Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 2008;49:480-508.

    Article  PubMed  Google Scholar 

  134. Fischman AJ. Positron emission tomography in the clinical evaluation of metastatic cancer. J Clin Oncol 1996;14:691-6.

    CAS  PubMed  Google Scholar 

  135. Weber WA, Avril N, Schwaiger M. Relevance of positron emission tomography (PET) in oncology. Strahlenther Onkol 1999;175:356-73.

    Article  CAS  PubMed  Google Scholar 

  136. Dhull VS, Sharma P, Mukherjee A, Jana M, Bal C, Kumar R. 18F-FDG PET-CT for evaluation of cardiac angiosarcoma: A case report and review of literature. Mol Imaging Radionucl Ther 2015;24:32-6.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Freudenberg LS, Rosenbaum SJ, Schulte-Herbruggen J, et al Diagnosis of a cardiac angiosarcoma by fluorine-18 fluorodeoxyglucose positron emission tomography. Eur Radiol 2002;12:S158-61.

    PubMed  Google Scholar 

  138. Higashiyama S, Kawabe J, Hayashi T, et al Effectiveness of preoperative PET examination of huge angiosarcoma of the heart. Clin Nucl Med 2009;34:99-102.

    Article  PubMed  Google Scholar 

  139. Hori Y, Funabashi N, Miyauchi H, Nakagawa K, Shimura H, Miyazaki M, et al Angiosarcoma in the right atria demonstrated by fusion images of multislice computed tomography and positron emission tomography using F-18 Fluoro-Deoxyglucose. Int J Cardiol 2007;123:e15-7.

    Article  PubMed  Google Scholar 

  140. Bussani R, De-Giorgio F, Abbate A, Silvestri F. Cardiac metastases. J Clin Pathol 2007;60:27-34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Butany J, Leong SW, Carmichael K, Komeda M. A 30-year analysis of cardiac neoplasms at autopsy. Can J Cardiol 2005;21:675-80.

    PubMed  Google Scholar 

  142. Nonaka A, Stugaard M, Ueda O, Hara H, Shimada T, Shiotani H. Fluorodeoxyglucose-positron emission tomography differentiating thrombus from tumor in the left ventricle. J Am Coll Cardiol 2009;53:894.

    Article  PubMed  Google Scholar 

  143. Tong AK, Mann KP, Schuster DM, Yan X. A rare presentation of myocardial plasmacytoma assessed by FDG PET/CT. Clin Nucl Med 2014;39:643-5.

    Article  PubMed  Google Scholar 

  144. Rahbar K, Seifarth H, Schafers M, et al Differentiation of malignant and benign cardiac tumors using 18F-FDG PET/CT. J Nucl Med 2012;53:856-63.

    Article  CAS  PubMed  Google Scholar 

  145. Carrio I. Cardiac neurotransmission imaging. J Nucl Med 2001;42:1062-76.

    CAS  PubMed  Google Scholar 

  146. Olmos RAV, ten Bokkel Huinink WW, ten Hoeve RF, et al Assessment of anthracycline-related myocardial adrenergic derangement by [123I]metaiodobenzylguanidine scintigraphy. Eur J Cancer 1995;31A:26-31.

  147. Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BL. Prognostic value of myocardial 123I-metaiodobenzylguanidine (mIBG) parameters in patients with heart failure: A systematic review. Eur Heart J 2008;29:1147-59.

    Article  PubMed  Google Scholar 

  148. Carrio I, Estorch M, Berna L, Lopez-Pousa J, Tabernero J, Torres G. Indium-111-antimyosin and iodine-123-mIBG studies in early assessment of doxorubicin cardiotoxicity. J Nucl Med 1995;36:2044-9.

    CAS  PubMed  Google Scholar 

  149. Carrio I, Lopez-Pousa A, Estorch M, Duncker D, Berna L, Torres G, et al Detection of doxorubicin cardiotoxicity in patients with sarcomas by indium-111-antimyosin monoclonal antibody studies. J Nucl Med 1993;34:1503-7.

    CAS  PubMed  Google Scholar 

  150. Bennink RJ, van den Hoff MJ, van Hemert FJ, et al Annexin V imaging of acute doxorubicin cardiotoxicity (apoptosis) in rats. J Nucl Med 2004;45:842-8.

    CAS  PubMed  Google Scholar 

  151. Takemura G, Fujiwara H. Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 2007;49:330-52.

    Article  CAS  PubMed  Google Scholar 

  152. Gabrielson KL, Mok GS, Nimmagadda S, et al Detection of dose response in chronic doxorubicin-mediated cell death with cardiac technetium 99 m annexin V single-photon emission computed tomography. Mol Imaging 2008;7:132-8.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Spallarossa P, Garibaldi S, Altieri P, Fabbi P, Manca V, Nasti S, et al Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol 2004;37:837-46.

    Article  CAS  PubMed  Google Scholar 

  154. Narula J, Acio ER, Narula N, et al Annexin-V imaging for noninvasive detection of cardiac allograft rejection. Nat Med 2001;7:1347-52.

    Article  CAS  PubMed  Google Scholar 

  155. Su H, Gorodny N, Gomez LF, et al Noninvasive molecular imaging of apoptosis in a mouse model of anthracycline-induced cardiotoxicity. Circ Cardiovasc Imaging 2015;8:e001952.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Hayakawa H, Komada Y, Hirayama M, Hori H, Ito M, Sakurai M. Plasma levels of natriuretic peptides in relation to doxorubicin-induced cardiotoxicity and cardiac function in children with cancer. Med Pediatr Oncol 2001;37:4-9.

    Article  CAS  PubMed  Google Scholar 

  157. Cardinale D, Sandri MT, Martinoni A, et al Myocardial injury revealed by plasma troponin I in breast cancer treated with high-dose chemotherapy. Ann Oncol 2002;13:710-5.

    Article  CAS  PubMed  Google Scholar 

  158. Cardinale D, Sandri MT, Martinoni A, et al Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol 2000;36:517-22.

    Article  CAS  PubMed  Google Scholar 

  159. Carrio I, Estorch M, Berna L, Germá JR, Alonso C, Ojeda B, et al Assessment of anthracycline-induced myocardial damage by quantitative indium 111 myosin-specific monoclonal antibody studies. Eur J Nucl Med 1991;18:806-12.

    Article  CAS  PubMed  Google Scholar 

  160. Hiroe M, Ohta Y, Fujita N, Nagata M, Toyozaki T, Kusakabe K, et al Myocardial uptake of 111In monoclonal antimyosin Fab in detecting doxorubicin cardiotoxicity in rats. Morphological and hemodynamic findings. Circulation 1992;86:1965-72.

    Article  CAS  PubMed  Google Scholar 

  161. Estorch M, Carrio I, Berna L, Martínez-Duncker C, Alonso C, Germá JR, et al Indium-111-antimyosin scintigraphy after doxorubicin therapy in patients with advanced breast cancer. J Nucl Med 1990;31:1965-9.

    CAS  PubMed  Google Scholar 

  162. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 2010;55:2212-21.

    Article  PubMed  Google Scholar 

  163. Olmos RAV, ten Bokkel Huinink WW, Greve JC, Hoefnagel CA. I-123 mIBG and serial radionuclide angiocardiography in doxorubicin-related cardiotoxicity. Clin Nucl Med 1992;17:163-7.

  164. Takano H, Ozawa H, Kobayashi I, Hamaoka S, Nakajima A, Nakamura T, et al Atrophic nerve fibers in regions of reduced mIBG uptake in doxorubicin cardiomyopathy. J Nucl Med 1995;36:2060-1.

    CAS  PubMed  Google Scholar 

  165. Wakasugi S, Fischman AJ, Babich JW. Metaiodobenzylguanidine: Evaluation of its potential as a tracer for monitoring doxorubicin cardiomyopathy. J Nucl Med 1993;34:1283-6.

    CAS  PubMed  Google Scholar 

  166. Takeishi Y, Sukekawa H, Sakurai T, Saito H, Nishimura S, Shibu T, et al Noninvasive identification of anthracycline cardiotoxicity: Comparison of 123I-mIBG and 123I-BMIPP imaging. Ann Nucl Med 1994;8:177-82.

    Article  CAS  PubMed  Google Scholar 

  167. Nousiainen T, Vanninen E, Jantunen E, Remes J, Kuikka J, Hartikainen J. Anthracycline-induced cardiomyopathy: Long-term effects on myocardial cell integrity, cardiac adrenergic innervation and fatty acid uptake. Clin Physiol 2001;21:123-8.

    Article  CAS  PubMed  Google Scholar 

  168. Behr TM, Behe M, Wormann B. Trastuzumab and breast cancer. N Engl J Med 2001;345:995-6.

    Article  CAS  PubMed  Google Scholar 

  169. Perik PJ, Lub-De Hooge MN, Gietema JA, van der Graaf WT, de Korte MA, Jonkman S, et al Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol 2006;24:2276-82.

    Article  CAS  PubMed  Google Scholar 

  170. de Korte MA, de Vries EG, Lub-de Hooge MN, Jager PL, Gietema JA, van der Graaf WTA, et al 111 Indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: A clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. Eur J Cancer 2007;43:2046-51.

    Article  PubMed  CAS  Google Scholar 

  171. Bokhari S, Castano A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging 2013;6:195-201.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Merlini G, Narula J, Arbustini E. Molecular imaging of misfolded protein pathology for early clues to involvement of the heart. Eur J Nucl Med Mol Imaging 2014;41:1649-51.

    Article  PubMed  Google Scholar 

  173. Antoni G, Lubberink M, Estrada S, Axelsson J, Carlson K, Lindsjö L, et al In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med 2013;54:213-20.

    Article  CAS  PubMed  Google Scholar 

  174. Dorbala S, Vangala D, Semer J, Strader C, Bruyere Jr JR, Di Carli MF, et al Imaging cardiac amyloidosis: A pilot study using (1)(8)F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging 2014;41:1652-62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond R. Russell MD, PhD, FASNC.

Appendix

Appendix

See Tables 1, 2, 3, 4, 5, and 6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russell, R.R., Alexander, J., Jain, D. et al. The role and clinical effectiveness of multimodality imaging in the management of cardiac complications of cancer and cancer therapy. J. Nucl. Cardiol. 23, 856–884 (2016). https://doi.org/10.1007/s12350-016-0538-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-016-0538-8

Keywords

Navigation