Skip to main content

Advertisement

Log in

Recent Insights into the Environmental Determinants of Childhood Asthma

  • Review
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Ubiquitous environmental exposures, including ambient air pollutants, are linked to the development and severity of childhood asthma. Advances in our understanding of these links have increasingly led to clinical interventions to reduce asthma morbidity.

Recent Findings

We review recent work untangling the complex relationship between air pollutants, including particulate matter, nitrogen dioxide, and ozone and asthma, such as vulnerable windows of pediatric exposure and their interaction with other factors influencing asthma development and severity. These have led to interventions to reduce air pollutant levels in children’s homes and schools. We also highlight emerging environmental exposures increasingly associated with childhood asthma. Growing evidence supports the present threat of climate change to children with asthma.

Summary

Environmental factors play a large role in the pathogenesis and persistence of pediatric asthma; in turn, this poses an opportunity to intervene to change the course of disease early in life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Most Recent National Asthma Data. Atlanta, GA: Centers for Disease Control and Prevention; 2023 [cited 2024 February 16]. Available from: https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm.

  2. Khreis H, Kelly C, Tate J, Parslow R, Lucas K, Nieuwenhuijsen M. Exposure to traffic-related air pollution and risk of development of childhood asthma: a systematic review and meta-analysis. Environ Int. 2017;100:1–31.

    Article  CAS  PubMed  Google Scholar 

  3. Garcia E, Berhane KT, Islam T, McConnell R, Urman R, Chen Z, et al. Association of changes in air quality with incident asthma in children in California, 1993–2014. JAMA. 2019;321(19):1906–15.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Anenberg SC, Mohegh A, Goldberg DL, Kerr GH, Brauer M, Burkart K, et al. Long-term trends in urban NO(2) concentrations and associated paediatric asthma incidence: estimates from global datasets. Lancet Planet Health. 2022;6(1):e49–58.

    Article  PubMed  Google Scholar 

  5. Bettiol A, Gelain E, Milanesio E, Asta F, Rusconi F. The first 1000 days of life: traffic-related air pollution and development of wheezing and asthma in childhood. A systematic review of birth cohort studies. Environ Health. 2021;20(1):46.

  6. •• Hazlehurst MF, Carroll KN, Loftus CT, Szpiro AA, Moore PE, Kaufman JD, et al. Maternal exposure to PM(2.5) during pregnancy and asthma risk in early childhood: consideration of phases of fetal lung development. Environ Epidemiol. (Philadelphia, Pa). 2021;5(2). Largest (n = 1,469) prospective cohort study of prenatal PM exposure and asthma to date, examining different gestational ages corresponding to phases of lung development.

  7. Xu M, Shao M, Chen Y, Liu C. Early life exposure to particulate matter and childhood asthma in Beijing, China: a case-control study. Int J Environ Health Res. 2024;34(1):526–34.

    Article  CAS  PubMed  Google Scholar 

  8. Hüls A, Vanker A, Gray D, Koen N, MacIsaac JL, Lin DTS, et al. Genetic susceptibility to asthma increases the vulnerability to indoor air pollution. Eur Respir J. 2020;55(3).

  9. Bové H, Bongaerts E, Slenders E, Bijnens EM, Saenen ND, Gyselaers W, et al. Ambient black carbon particles reach the fetal side of human placenta. Nat Commun. 2019;10(1):3866.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Beamer PI, Furlong M, Lothrop N, Guerra S, Billheimer D, Stern DA, et al. CC16 levels into adult life are associated with nitrogen dioxide exposure at birth. Am J Respir Crit Care Med. 2019;200(5):600–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhai J, Insel M, Addison KJ, Stern DA, Pederson W, Dy A, et al. Club cell secretory protein deficiency leads to altered lung function. Am J Respir Crit Care Med. 2019;199(3):302–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Olsson D, Forsberg B, Bråbäck L, Geels C, Brandt J, Christensen JH, et al. Early childhood exposure to ambient air pollution is associated with increased risk of paediatric asthma: an administrative cohort study from Stockholm. Sweden Environment international. 2021;155: 106667.

    Article  CAS  PubMed  Google Scholar 

  13. Lau N, Smith MJ, Sarkar A, Gao Z. Effects of low exposure to traffic related air pollution on childhood asthma onset by age 10 years. Environ Res. 2020;191: 110174.

    Article  CAS  PubMed  Google Scholar 

  14. Gehring U, Wijga AH, Koppelman GH, Vonk JM, Smit HA, Brunekreef B. Air pollution and the development of asthma from birth until young adulthood. Eur Respir J. 2020;56(1).

  15. Zhao Q, Kress S, Markevych I, Berdel D, von Berg A, Gappa M, et al. Air pollution during infancy and lung function development into adolescence: the GINIplus/LISA birth cohorts study. Environ Int. 2021;146: 106195.

    Article  CAS  PubMed  Google Scholar 

  16. Bédard MA, Reyna ME, Moraes TJ, Simons E, Turvey SE, Mandhane P, et al. Association between gas stove use and childhood asthma in the Canadian CHILD Cohort Study. Can J Public Health = Revue canadienne de sante publique. 2023;114(4):705–8.

  17. Lu W, Wang LA, Mann J, Jenny A, Romero C, Kuster A, et al. Biomass smoke exposure and atopy among young children in the Western Highlands of Guatemala: a prospective cohort study. Int J Environ Res Public Health. 2022;19(21).

  18. Brumberg HL, Karr CJ. Ambient air pollution: health hazards to children. Pediatrics. 2021;147(6).

  19. Wang Y, Zhu H, Kannan K. A review of biomonitoring of phthalate exposures. Toxics. 2019;7(2).

  20. Ferguson KK, McElrath TF, Meeker JD. Environmental phthalate exposure and preterm birth. JAMA Pediatr. 2014;168(1):61–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. American College of O, Gynecologists’ Committee on Obstetric P. Reducing Prenatal Exposure to Toxic Environmental Agents: ACOG Committee Opinion, Number 832. Obstet Gynecol. 2021;138(1):e40-e54.

  22. Whyatt RM, Perzanowski MS, Just AC, Rundle AG, Donohue KM, Calafat AM, et al. Asthma in inner-city children at 5–11 years of age and prenatal exposure to phthalates: the Columbia Center for Children’s Environmental Health Cohort. Environ Health Perspect. 2014;122(10):1141–6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wu W, Wu C, Ji C, Diao F, Peng J, Luo D, et al. Association between phthalate exposure and asthma risk: a meta-analysis of observational studies. Int J Hyg Environ Health. 2020;228: 113539.

    Article  CAS  PubMed  Google Scholar 

  24. Jøhnk C, Høst A, Husby S, Schoeters G, Timmermann CAG, Kyhl HB, et al. Maternal phthalate exposure and asthma, rhinitis and eczema in 552 children aged 5 years; a prospective cohort study. Environ Health. 2020;19(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Adgent MA, Carroll KN, Hazlehurst MF, Loftus CT, Szpiro AA, Karr CJ, et al. A combined cohort analysis of prenatal exposure to phthalate mixtures and childhood asthma. Environ Int. 2020;143: 105970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karramass T, Sol C, Kannan K, Trasande L, Jaddoe V, Duijts L. Bisphenol and phthalate exposure during pregnancy and the development of childhood lung function and asthma. The Generation R Study. Environ Pollut. (Barking, Essex : 1987). 2023;332:121853.

  27. Navaranjan G, Diamond ML, Harris SA, Jantunen LM, Bernstein S, Scott JA, et al. Early life exposure to phthalates and the development of childhood asthma among Canadian children. Environ Res. 2021;197: 110981.

    Article  CAS  PubMed  Google Scholar 

  28. Perera FP, Chang HW, Tang D, Roen EL, Herbstman J, Margolis A, et al. Early-life exposure to polycyclic aromatic hydrocarbons and ADHD behavior problems. PLoS ONE. 2014;9(11): e111670.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. Wallace ER, Ni Y, Loftus CT, Sullivan A, Masterson E, Szpiro AA, et al. Prenatal urinary metabolites of polycyclic aromatic hydrocarbons and toddler cognition, language, and behavior. Environ Int. 2022;159: 107039.

    Article  CAS  PubMed  Google Scholar 

  30. Sun B, Wallace ER, Ni Y, Loftus CT, Szpiro A, Day D, et al. Prenatal exposure to polycyclic aromatic hydrocarbons and cognition in early childhood. Environ Int. 2023:108009.

  31. Miller RL, Garfinkel R, Lendor C, Hoepner L, Li Z, Romanoff L, et al. Polycyclic aromatic hydrocarbon metabolite levels and pediatric allergy and asthma in an inner-city cohort. Pediatr Allergy Immunol. 2010;21(2 Pt 1):260–7.

    Article  PubMed  Google Scholar 

  32. Jung KH, Lovinsky-Desir S, Perzanowski M, Liu X, Maher C, Gil E, et al. Repeatedly high polycyclic aromatic hydrocarbon exposure and cockroach sensitization among inner-city children. Environ Res. 2015;140:649–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Substances AfT, Disease Registry. Toxicological profile for polycyclic aromatic hydrocarbons. Atlanta, Ga.]: U.S. Dept. of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry. 1995.

  34. Loftus CT, Szpiro AA, Workman T, Wallace ER, Hazlehurst MF, Day DB, et al. Maternal exposure to urinary polycyclic aromatic hydrocarbons (PAH) in pregnancy and childhood asthma in a pooled multi-cohort study. Environ Int. 2022;170: 107494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sherris AR, Loftus CT, Szpiro AA, Dearborn L, Hazlehurst MF, Carroll KN, et al. Prenatal polycyclic aromatic hydrocarbon exposure and asthma at age 8–9 years in a multi-site longitudinal study. Res Sq. 2023.

  36. Indoor Air Quality Scientific Findings Resource Bank. Volatile Organic Compounds. Berkeley, CA: Lawrence Berkeley National Laboratory; 2022 [cited 2024 February 16]. Available from: https://iaqscience.lbl.gov/volatile-organic-compounds-topics.

  37. Franck U, Weller A, Röder SW, Herberth G, Junge KM, Kohajda T, et al. Prenatal VOC exposure and redecoration are related to wheezing in early infancy. Environ Int. 2014;73:393–401.

    Article  CAS  PubMed  Google Scholar 

  38. Chaya S, Vanker A, Brittain K, MacGinty R, Jacobs C, Hantos Z, et al. The impact of antenatal and postnatal indoor air pollution or tobacco smoke exposure on lung function at 3 years in an African birth cohort. Respirology. 2023.

  39. Gutiérrez-Delgado RI, Barraza-Villarreal A, Escamilla-Núñez MC, Hernández-Cadena L, Cortez-Lugo M, Sly P, et al. Prenatal exposure to VOCs and NOx and lung function in preschoolers. Pediatr Pulmonol. 2020;55(8):2142–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Farrow A, Taylor H, Northstone K, Golding J. Symptoms of mothers and infants related to total volatile organic compounds in household products. Arch Environ Health. 2003;58(10):633–41.

    Article  CAS  PubMed  Google Scholar 

  41. Boyle EB, Viet SM, Wright DJ, Merrill LS, Alwis KU, Blount BC, et al. Assessment of exposure to VOCs among pregnant women in the National Children’s Study. Int J Environ Res Public Health. 2016;13(4):376.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Day DB, Sathyanarayana S, LeWinn KZ, Karr CJ, Mason WA, Szpiro AA. A permutation test-based approach to strengthening inference on the effects of environmental mixtures: comparison between single-index analytic methods. Environ Health Perspect. 2022;130(8):87010.

    Article  PubMed  Google Scholar 

  43. Orellano P, Quaranta N, Reynoso J, Balbi B, Vasquez J. Effect of outdoor air pollution on asthma exacerbations in children and adults: systematic review and multilevel meta-analysis. PLoS ONE. 2017;12(3): e0174050.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li X, Chen Q, Zheng X, Li Y, Han M, Liu T, et al. Effects of ambient ozone concentrations with different averaging times on asthma exacerbations: a meta-analysis. Sci Total Environ. 2019;691:549–61.

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Zhang Y, Xu X, Zhang G, Li Q, Luo Z. The association between PM2.5 concentration and the severity of acute asthmatic exacerbation in hospitalized children: a retrospective study in Chongqing, China. Pediatr Pulmonol. 2023;58(10):2733–45.

  46. Yadav R, Nagori A, Mukherjee A, Singh V, Lodha R, Kabra SK, et al. Effects of ambient air pollution on emergency room visits of children for acute respiratory symptoms in Delhi, India. Environ Sci Pollut Res Int. 2021;28(33):45853–66.

    Article  CAS  PubMed  Google Scholar 

  47. Hardell J, Silver EJ, Kavouras I, Lee DS, Gross E. Childhood asthma in the Bronx, NY; the impact of pollutants on length of hospital stay. J Asthma. 2023;60(12):2160–9.

    Article  CAS  PubMed  Google Scholar 

  48. Kim HS, Kim K, Rhee EH, Kim WK, Song DJ, Park JS, et al. Atmospheric environment and persistence of pediatric asthma: a population-based cohort study. Asian Pac J Allergy Immunol. 2024.

  49. Dyer C. Air pollution from road traffic contributed to girl’s death from asthma, coroner concludes. BMJ. 2020;371: m4902.

    Article  PubMed  Google Scholar 

  50. Varghese D, Clemens T, McMurray A, Pinnock H, Grigg J, Cunningham S. Near-fatal and fatal asthma and air pollution: are we missing an opportunity to ask key questions? Arch Dis Child. 2023.

  51. • Mirabelli MC, Flanders WD, Vaidyanathan A, Beavers DP, Gower WA. Ambient air quality and fatal asthma exacerbations among children in North Carolina. Epidemiology. 2023;34(6):888–91. Registry-based case-crossover study of all childhood asthma deaths in North Carolina 2001-2016, linked to daily PM2.5 exposure. Compared to the lowest tertile of PM2.5 exposure, the highest tertile was associated with 2.2 times the odds of mortality.

  52. Kelchtermans J, Mentch F, Hakonarson H. Ambient air pollution sensitivity and severity of pediatric asthma. J Expo Sci Environ Epidemiol. 2023.

  53. Rabinovitch N, Strand M, Gelfand EW. Particulate levels are associated with early asthma worsening in children with persistent disease. Am J Respir Crit Care Med. 2006;173(10):1098–105.

    Article  CAS  PubMed  Google Scholar 

  54. Afshar-Mohajer N, Wu TD, Shade R, Brigham E, Woo H, Wood M, et al. Obesity, tidal volume, and pulmonary deposition of fine particulate matter in children with asthma. Eur Respir J. 2022;59(3).

  55. Permaul P, Gaffin JM, Petty CR, Baxi SN, Lai PS, Sheehan WJ, et al. Obesity may enhance the adverse effects of NO(2) exposure in urban schools on asthma symptoms in children. J Allergy Clin Immunol. 2020;146(4):813-20.e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rosser FJ, Han YY, Forno E, Guilbert TW, Bacharier LB, Phipatanakul W, et al. Long-term PM(2.5) exposure and lung function change in children with asthma receiving inhaled corticosteroids. Am J Respir Crit Care Med. 2023.

  57. Sadreameli SC, Ahmed A, Curtin-Brosnan J, Perzanowski MS, Phipatanakul W, Balcer-Whaley S, et al. Indoor environmental factors may modify the response to mouse allergen reduction among mouse-sensitized and exposed children with persistent asthma. J Allergy Clin Immunol Pract. 2021;9(12):4402–9 e2.

  58. Butz AM, Matsui EC, Breysse P, Curtin-Brosnan J, Eggleston P, Diette G, et al. A randomized trial of air cleaners and a health coach to improve indoor air quality for inner-city children with asthma and secondhand smoke exposure. Arch Pediatr Adolesc Med. 2011;165(8):741–8.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lanphear BP, Hornung RW, Khoury J, Yolton K, Lierl M, Kalkbrenner A. Effects of HEPA air cleaners on unscheduled asthma visits and asthma symptoms for children exposed to secondhand tobacco smoke. Pediatrics. 2011;127(1):93–101.

    Article  PubMed  Google Scholar 

  60. Noonan CW, Semmens EO, Smith P, Harrar SW, Montrose L, Weiler E, et al. Randomized trial of interventions to improve childhood asthma in homes with wood-burning stoves. Environ Health Perspect. 2017;125(9): 097010.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cui X, Li Z, Teng Y, Barkjohn KK, Norris CL, Fang L, et al. Association between bedroom particulate matter filtration and changes in airway pathophysiology in children with asthma. JAMA Pediatr. 2020;174(6):533–42.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gent JF, Holford TR, Bracken MB, Plano JM, McKay LA, Sorrentino KM, et al. Childhood asthma and household exposures to nitrogen dioxide and fine particles: a triple-crossover randomized intervention trial. J Asthma. 2023;60(4):744–53.

    Article  CAS  PubMed  Google Scholar 

  63. Gaffin JM, Hauptman M, Petty CR, Haktanir-Abul M, Gunnlaugsson S, Lai PS, et al. Differential effect of school-based pollution exposure in children with asthma born prematurely. Chest. 2020;158(4):1361–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mentz G, Robins TG, Batterman S, Naidoo RN. Effect modifiers of lung function and daily air pollutant variability in a panel of schoolchildren. Thorax. 2019;74(11):1055–62.

    Article  PubMed  Google Scholar 

  65. •• Phipatanakul W, Koutrakis P, Coull BA, Petty CR, Gaffin JM, Sheehan WJ, et al. Effect of school integrated pest management or classroom air filter purifiers on asthma symptoms in students with active asthma: a randomized clinical trial. JAMA. 2021;326(9):839–50. A factorial randomized controlled trial of HEPA air purifiers and integrated pest management in schools with children with asthma in the Northeast US. The primary outcome was asthma symptom-days over 2 weeks. No difference between intervention and sham groups was found.

  66. •• Drieling RL, Sampson PD, Krenz JE, Tchong French MI, Jansen KL, Massey AE, et al. Randomized trial of a portable HEPA air cleaner intervention to reduce asthma morbidity among Latino children in an agricultural community. Environ Health. 2022;21(1):1. A randomized controlled trial of HEPA air purifiers in homes of children with asthma in an agricultural community in Washington. Four primary outcomes were selected: asthma control test scores, symptom days, clinical utilization, and urinary leukotriene E4 concentration. Findings suggest improvements in the intervention group, though some did not reach statistical significance.

  67. Rosser FJ, Rothenberger SD, Han YY, Forno E, Celedón JC. Air quality index and childhood asthma: a pilot randomized clinical trial intervention. Am J Prev Med. 2023;64(6):893–7.

    Article  PubMed  Google Scholar 

  68. Papadopoulos NG, Akdis CA, Akdis M, Damialis A, Esposito G, Fergadiotou I, et al. Addressing adverse synergies between chemical and biological pollutants at schools-the ‘SynAir-G’ hypothesis. Allergy. 2024;79(2):294–301.

    Article  PubMed  Google Scholar 

  69. Quiros-Alcala L, Hansel NN, McCormack M, Calafat AM, Ye X, Peng RD, et al. Exposure to bisphenols and asthma morbidity among low-income urban children with asthma. J Allergy Clin Immunol. 2021;147(2):577–86 e7.

  70. Babadi RS, Riederer AM, Sampson PD, Sathyanarayana S, Kavanagh TJ, Krenz JE, et al. Longitudinal measures of phthalate exposure and asthma exacerbation in a rural agricultural cohort of Latino children in Yakima Valley, Washington. Int J Hyg Environ Health. 2022;243: 113954.

    Article  CAS  PubMed  Google Scholar 

  71. Fandiño-Del-Rio M, Matsui EC, Peng RD, Meeker JD, Quirós-Alcalá L. Phthalate biomarkers and associations with respiratory symptoms and healthcare utilization among low-income urban children with asthma. Environ Res. 2022;212(Pt B): 113239.

    Article  PubMed  Google Scholar 

  72. Uong SP, Hussain H, Thanik E, Lovinsky-Desir S, Stingone JA. Urinary metabolites of polycyclic aromatic hydrocarbons and short-acting beta agonist or systemic corticosteroid asthma medication use within NHANES. Environ Res. 2023;220: 115150.

    Article  CAS  PubMed  Google Scholar 

  73. Alford KL, Kumar N. Pulmonary health effects of indoor volatile organic compounds-a meta-analysis. Int J Environ Res Public Health. 2021;18(4).

  74. Rumchev K, Spickett J, Bulsara M, Phillips M, Stick S. Association of domestic exposure to volatile organic compounds with asthma in young children. Thorax. 2004;59(9):746–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Arif AA, Shah SM. Association between personal exposure to volatile organic compounds and asthma among US adult population. Int Arch Occup Environ Health. 2007;80(8):711–9.

    Article  CAS  PubMed  Google Scholar 

  76. Benka-Coker WO, Loftus C, Karr C, Magzamen S. Characterizing the joint effects of pesticide exposure and criteria ambient air pollutants on pediatric asthma morbidity in an agricultural community. Environ Epidemiol (Philadelphia, Pa). 2019;3(3).

    Article  Google Scholar 

  77. Benka-Coker W, Hoskovec L, Severson R, Balmes J, Wilson A, Magzamen S. The joint effect of ambient air pollution and agricultural pesticide exposures on lung function among children with asthma. Environ Res. 2020;190: 109903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mukharesh L, Greco KF, Banzon T, Koutrakis P, Li L, Hauptman M, et al. Environmental radon and childhood asthma. Pediatr Pulmonol. 2022;57(12):3165–8.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Schinasi LH, Kenyon CC, Hubbard RA, Zhao Y, Maltenfort M, Melly SJ, et al. Associations between high ambient temperatures and asthma exacerbation among children in Philadelphia, PA: a time series analysis. Occup Environ Med. 2022;79(5):326–32.

    Article  PubMed  Google Scholar 

  80. Abatzoglou JT, Williams AP. Impact of anthropogenic climate change on wildfire across western US forests. Proc Natl Acad Sci USA. 2016;113(42):11770–5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Borchers Arriagada N, Horsley JA, Palmer AJ, Morgan GG, Tham R, Johnston FH. Association between fire smoke fine particulate matter and asthma-related outcomes: Systematic review and meta-analysis. Environ Res. 2019;179(Pt A): 108777.

    Article  CAS  PubMed  Google Scholar 

  82. Rice MB, Henderson SB, Lambert AA, Cromar KR, Hall JA, Cascio WE, et al. Respiratory impacts of wildland fire smoke: future challenges and policy opportunities. An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc. 2021;18(6):921–30.

  83. Thurston G, Yu W, Luglio D. An evaluation of the asthma impact of the June 2023 New York City Wildfire Air Pollution Episode. Am J Respir Crit Care Med. 2023;208(8):898–900.

    Article  PubMed  Google Scholar 

  84. Moore LE, Oliveira A, Zhang R, Behjat L, Hicks A. Impacts of wildfire smoke and air pollution on a pediatric population with asthma: a population-based study. Int J Environ Res Public Health. 2023;20(3).

  85. Adibi A, Barn P, Shellington EM, Harvard S, Johnson KM, Carlsten C. HEPA air filters for preventing wildfire-related asthma complications, a cost-effectiveness study. Am J Respir Crit Care Med. 2023.

  86. Achilleos S, Michanikou A, Kouis P, Papatheodorou SI, Panayiotou AG, Kinni P, et al. Improved indoor air quality during desert dust storms: the impact of the MEDEA exposure-reduction strategies. Sci Total Environ. 2023;863: 160973.

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Willis M, Hystad P, Denham A, Hill E. Natural gas development, flaring practices and paediatric asthma hospitalizations in Texas. Int J Epidemiol. 2021;49(6):1883–96.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Figures were created with BioRender.com.

Funding

Dr. Sun is a Fellow in the Pediatric Scientist Development Program, supported by NIH/NICHD grant K12HD000850 and the Cystic Fibrosis Foundation. Dr. Gaffin is supported by NIH/NIEHS grants R01ES030100, P30ES000002 and the American Lung Association.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Sun drafted the manuscript and prepared the figures. Dr. Gaffin conceived of the work and critically reviewed the manuscript.

Corresponding author

Correspondence to Jonathan M. Gaffin.

Ethics declarations

Conflict of Interest

Dr. Sun declares no conflicts of interest. Dr. Gaffin reports personal fees from medical-legal consulting, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B.Z., Gaffin, J.M. Recent Insights into the Environmental Determinants of Childhood Asthma. Curr Allergy Asthma Rep (2024). https://doi.org/10.1007/s11882-024-01140-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11882-024-01140-2

Keywords

Navigation