Skip to main content
Log in

Translating dyslexia across species

  • Published:
Annals of Dyslexia Aims and scope Submit manuscript

Abstract

Direct relationships between induced mutation in the DCDC2 candidate dyslexia susceptibility gene in mice and changes in behavioral measures of visual spatial learning have been reported. We were interested in determining whether performance on a visual-spatial learning and memory task could be translated across species (study 1) and whether children with reading impairment showed a similar impairment to animal models of the disorder (study 2). Study 1 included 37 participants who completed six trials of four different virtual Hebb-Williams maze configurations. A 2 × 4 × 6 mixed factorial repeated measures ANOVA indicated consistency in performance between humans and mice on these tasks, enabling us to translate across species. Study 2 included a total of 91 participants (age range = 8–13 years). Eighteen participants were identified with reading disorder by performance on the Woodcock-Johnson III Tests of Achievement. Participants completed six trials of five separate virtual Hebb-Williams maze configurations. A 2 × 5 × 6 mixed factorial ANCOVA (gender as covariate) indicated that individuals with reading impairment demonstrated impaired visuo-spatial performance on this task. Overall, results from this study suggest that we are able to translate behavioral deficits observed in genetic animal models of dyslexia to humans with reading impairment. Future studies will utilize the virtual environment to further explore the underlying basis for this impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baumann, O., Skilleter, A. J., & Mattingley, J. B. (2011). Short-term memory maintenance of object locations during active navigation: which working memory subsystem is essential? PLoS One, 6(5), e19707.

    Article  Google Scholar 

  • Bishop, D. V. (2015). The interface between genetics and psychology: lessons from developmental dyslexia. Proceedings of the Biological Sciences, 282(1806), 20143139. doi:10.1098/rspb.2014.3139.

    Article  Google Scholar 

  • Boehm, G., Sherman, G., Hoplight, B. n., Hyde, L., Waters, N., Bradway, D., . . . Denenberg, V. (1996). Learning and memory in the autoimmune BXSB mouse: effects of neocortical ectopias and environmental enrichment. Brain Research, 726(1–2), 11–22.

  • Bosse, M. L., Tainturier, M. J., & Valdois, S. (2007). Developmental dyslexia: the visual attention span deficit hypothesis. Cognition, 104(2), 198–230.

    Article  Google Scholar 

  • Braun, J. M., Lucchini, R., Bellinger, D. C., Hoffman, E., Nazzaro, M., Smith, D. R., & Wright, R. O. (2012). Predictors of virtual radial arm maze performance in adolescent Italian children. Neurotoxicology, 33(5), 1203–1211. doi:10.1016/j.neuro.2012.06.012.

    Article  Google Scholar 

  • Che, A., Girgenti, M. J., & Loturco, J. (2013). The dyslexia-associated gene Dcdc2 is required for spike-timing precision in mouse neocortex. Biological Psychiatry, 76(5), 387–396. doi:10.1016/j.biopsych.2013.08.018.

    Article  Google Scholar 

  • Cope, N., Eicher, J. D., Meng, H., Gibson, C. J., Hager, K., Lacadie, C., . . . Gruen, J. R. (2012). Variants in the DYX2 locus are associated with altered brain activation in reading-related brain regions in subjects with reading disability. Neuroimage, 63(1), 148–156. doi:10.1016/j.neuroimage.2012.06.037.

  • Darki, F., Peyrard-Janvid, M., Matsson, H., Kere, J., & Klingberg, T. (2012). Three dyslexia susceptibility genes, DYX1C1, DCDC2, and KIAA0319, affect temporo-parietal white matter structure. Biological Psychiatry, 72(8), 671–676. doi:10.1016/j.biopsych.2012.05.008.

    Article  Google Scholar 

  • Dolins, F. L., Klimowicz, C., Kelley, J., & Menzel, C. R. (2014). Using virtual reality to investigate comparative spatial cognitive abilities in chimpanzees and humans. American Journal of Primatology. doi:10.1002/ajp.22252.

    Google Scholar 

  • Eicher, J. D., & Gruen, J. R. (2013). Imaging-genetics in dyslexia: connecting risk genetic variants to brain neuroimaging and ultimately to reading impairments. Molecular Genetics and Metabolism, 110(3), 201–212. doi:10.1016/j.ymgme.2013.07.001.

    Article  Google Scholar 

  • Eicher, J. D., Powers, N. R., Miller, L. L., Mueller, K. L., Mascheretti, S., Marino, C., . . . Gruen, J. R. (2014). Characterization of the DYX2 locus on chromosome 6p22 with reading disability, language impairment, and IQ. Human Genetics. doi:10.1007/s00439-014-1427-3.

  • Facoetti, A., Corradi, N., Ruffino, M., Gori, S., & Zorzi, M. (2010). Visual spatial attention and speech segmentation are both impaired in preschoolers at familial risk for developmental dyslexia. Dyslexia, 16(3), 226–239. doi:10.1002/dys.413.

    Article  Google Scholar 

  • Facoetti, A., Trussardi, A. N., Ruffino, M., Lorusso, M. L., Cattaneo, C., Galli, R., ... Zorzi, M. (2010). Multisensory spatial attention deficits are predictive of phonological decoding skills in developmental dyslexia. Journal of Cognitive Neuroscience, 22(5), 1011–1025.

  • Facoetti, A., Turatto, M., Lorusso, M. L., & Mascetti, G. G. (2001). Orienting of visual attention in dyslexia: evidence for asymmetric hemispheric control of attention. Experimental Brain Research, 138(1), 46–53.

    Article  Google Scholar 

  • Facoetti, A., Zorzi, M., Cestnick, L., Lorusso, M. L., Molteni, M., Paganoni, P., … Mascetti, G. G. (2006). The relationship between visuo-spatial attention and nonword reading in developmental dyslexia. Cognitive Neuropsychology, 23(6), 841–855.

  • Franceschini, S., Gori, S., Ruffino, M., Pedrolli, K., & Facoetti, A. (2012). A causal link between visual spatial attention and reading acquisition. Current Biology, 22(9), 814–819.

    Article  Google Scholar 

  • Franceschini, S., Gori, S., Ruffino, M., Viola, S., Molteni, M., & Facoetti, A. (2013). Action video games make dyslexic children read better. Current Biology, 23(6), 462–466.

    Article  Google Scholar 

  • Gabel, L. A., Gibson, C. J., Gruen, J. R., & LoTurco, J. J. (2010). Progress towards a cellular neurobiology of reading disability. Neurobiology of Disease, 38(2), 173–180. doi:10.1016/j.nbd.2009.06.019.

    Article  Google Scholar 

  • Gabel, L. A., Marin, I., LoTurco, J. J., Che, A., Murphy, C., Manglani, M., & Kass, M. (2011). Mutation of the dyslexia-associated gene Dcdc2 impairs LTM and visuo-spatial performance in mice. Genes, Brain, and Behavior, 10(8), 868–875. doi:10.1111/j.1601-183X.2011.00727.x.

    Article  Google Scholar 

  • Geva-Sagiv, M., Las, L., Yovel, Y., & Ulanovsky, N. (2015). Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nature Reviews Neuroscience, 16(2), 94–108.

    Article  Google Scholar 

  • Gori, S., & Facoetti, A. (2015). How the visual aspects can be crucial in reading acquisition? The intriguing case of crowding and developmental dyslexia. Journal of Vision, 15(1), 15.11.18. doi:10.1167/15.1.8.

    Article  Google Scholar 

  • Gori, S., Mascheretti, S., Giora, E., Ronconi, L., Ruffino, M., & Quadrelli, E. (2015). The DCDC2 intron 2 deletion impairs illusory motion perception unveiling the selective role of magnocellular-dorsal stream in reading (dis)ability. Cerebral Cortex, 25(6), 1685–1695.

    Article  Google Scholar 

  • Goswami, U. (2015a). Sensory theories of developmental dyslexia: three challenges for research. Nature Reviews Neuroscience, 16(1), 43–54.

    Article  Google Scholar 

  • Goswami, U. (2015b). Visual attention span deficits and assessing causality in developmental dyslexia. Nature Reviews Neuroscience, 16(4), 225.

    Article  Google Scholar 

  • Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534–537.

    Article  Google Scholar 

  • Green, C. S., Li, R., & Bavelier, D. (2010). Perceptual learning during action video game playing. Topics in Cognitive Science, 2(2), 202–216.

    Article  Google Scholar 

  • Hebb, D. O., & Williams, K. (1946). A method of rating animal intelligence. Journal of General Psychology, 34, 59–65.

    Article  Google Scholar 

  • Hoplight, B. J., Sherman, G. F., Hyde, L. A., & Denenberg, V. H. (2001). Effects of neocortical ectopias and environmental enrichment on Hebb-Williams maze learning in BXSB mice. Neurobiology of Learning and Memory, 76(1), 33.

    Article  Google Scholar 

  • Hubert-Wallander, B., Green, C. S., & Bavelier, D. (2011). Stretching the limits of visual attention: the case of action video games. Wiley Interdisciplinary Reviews: Cognitive Science, 2(2), 222–230.

    Google Scholar 

  • Klauer, K. C., & Zhao, Z. (2004). Double dissociations in visual and spatial short-term memory. Journal of Experimental Psychology: General, 133(3), 355–381.

    Article  Google Scholar 

  • Lallier, M., Donnadieu, S., & Valdois, S. (2013). Developmental dyslexia: exploring how much phonological and visual attention span disorders are linked to simultaneous auditory processing deficits. Annals of Dyslexia, 63(2), 97–116.

    Article  Google Scholar 

  • Lee, J. Y., Kho, S., Yoo, H. B., Park, S., Choi, J. S., Kwon, J. S., … Jung, H. Y. (2014). Spatial memory impairments in amnestic mild cognitive impairment in a virtual radial arm maze. Neuropsychiatric Disease and Treatment, 10, 653–60.

  • Ludwig, K., Schumacher, J., Schulte-Körne, G., König, I., Warnke, A., & Plume, E. (2008). Investigation of the DCDC2 intron 2 deletion/compound short tandem repeat polymorphism in a large German dyslexia sample. Psychiatric Genetics, 18(6), 310–312.

    Article  Google Scholar 

  • MacLeod, L. S., Kogan, C. S., Collin, C. A., Berry-Kravis, E., Messier, C., & Gandhi, R. (2010). A comparative study of the performance of individuals with fragile X syndrome and Fmr1 knockout mice on Hebb-Williams mazes. Genes, Brain, and Behavior, 9(1), 53–64. doi:10.1111/j.1601-183X.2009.00534.x.

    Article  Google Scholar 

  • McConnell, J., & Quinn, J. G. (2000). Interference in visual working memory. The Quarterly Journal of Experimental Psychology Section A, 53(1), 53–67.

    Article  Google Scholar 

  • Meng, H., Powers, N. R., Tang, L., Cope, N. A., Zhang, P. X., Fuleihan, R., . . . Gruen, J. R. (2011). A dyslexia-associated variant in DCDC2 changes gene expression. Behavior Genetics, 41(1), 58–66. doi:10.1007/s10519-010-9408-3.

  • Meng, H., Smith, S., Hager, K., Held, M., Liu, J., Olson, R., . . . Gruen, J. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 17053–17058.

  • Menghini, D., Finzi, A., Carlesimo, G. A., & Vicari, S. (2011). Working memory impairment in children with developmental dyslexia: is it just a phonological deficity? Developmental Neuropsychology, 36(2), 199–213.

    Article  Google Scholar 

  • Meunier, M., Saint-Marc, M., & Destrade, C. (1986). The Hebb-Williams test to assess recovery of learning after limbic lesions in mice. Physiology and Behavior, 37(6), 909–913.

    Article  Google Scholar 

  • Moores, E., Cassim, R., & Talcott, J. B. (2011). Adults with dyslexia exhibit large effects of crowding, increased dependence on cues, and detrimental effects of distractors in visual search tasks. Neuropsychologia, 49(14), 3881–3890. doi:10.1016/j.neuropsychologia.2011.10.005.

    Article  Google Scholar 

  • Perry, C., Ziegler, J. C., & Zorzi, M. (2007). Nested incremental modeling in the development of computational theories: the CDP+ model of reading aloud. Psychological Review, 114, 273–315.

    Article  Google Scholar 

  • Peschansky, V. J., Burbridge, T. J., Volz, A. J., Fiondella, C., Wissner-Gross, Z., & Galaburda, A. M. (2010). The effect of variation in expression of the candidate dyslexia susceptibility gene homolog Kiaa0319 on neuronal migration and dendritic morphology in the rat. Cerebral Cortex, 20(4), 884–897.

    Article  Google Scholar 

  • Peterson, R. L., & Pennington, B. F. (2015). Developmental dyslexia. Annual Review of Clinical Psychology, 11, 283–307. doi:10.1146/annurev-clinpsy-032814-112842.

    Article  Google Scholar 

  • Ploran, E. J., Bevitt, J., Oshiro, J., Parasuraman, R., & Thompson, J. C. (2014). Self-motivated visual scanning predicts flexible navigation in a virtual environment. Frontiers in Human Neuroscience, 7, 892. doi:10.3389/fnhum.2013.00892.

    Article  Google Scholar 

  • Powers, N. R., Eicher, J. D., Butter, F., Kong, Y., Miller, L. L., Ring, S. M., . . . Gruen, J. R. (2013). Alleles of a polymorphic ETV6 binding site in DCDC2 confer risk of reading and language impairment. The American Journal of Human Genetics, 93(1), 19–28. doi:10.1016/j.ajhg.2013.05.008.

  • Powers, N. R., Eicher, J. D., Miller, L. L., Kong, Y., Smith, S. D., Pennington, B. F., … Gruen, J. R. (2015). The regulatory element READ1 epistatically influences reading and language, with both deleterious and protective alleles. Journal of Medical Genetics. doi:10.1136/jmedgenet-2015-103418.

  • Pugh, K. R., Mencl, W. E., Jenner, A. R., Katz, L., Frost, S. J., & Lee, J. R. (2000). Functional neuroimaging studies of reading and reading disability (developmental dyslexia). Mental Retardation and Developmental Disabilities Research Reviews, 6(3), 207–213.

    Article  Google Scholar 

  • Rabinovitch, M. S., & Rosvold, H. E. (1951). A closed-field intelligence test for rats. Canadian Journal of Psychology, 5(3), 122–128.

    Article  Google Scholar 

  • Scerri, T. S., Morris, A. P., Buckingham, L. L., Newbury, D. F., Miller, L. L., Monaco, A. P., ... Paracchini, S. (2011). DCDC2, KIAA0319 and CMIP are associated with reading-related traits. Biological Psychiatry, 70(3), 237–245.

  • Schrank, F. A., McGrew, K. S., & Woodcock, R. W. (2001). Woodcock-Johnson III assessment service bulletin no. 2. Itasca: Riverside Publishing.

    Google Scholar 

  • Shore, D. I., Stanford, L., MacInnes, W. J., Klein, R. M., & Brown, R. E. (2001). Of mice and men: virtual Hebb-Williams mazes permit comparison of spatial learning across species. Cognitive, Affective, & Behavioral Neuroscience, 1(1), 83–89.

    Article  Google Scholar 

  • Sireteanu, R., Goebel, C., Goertz, R., Werner, I., Nalewajko, M., & Thiel, A. (2008). Impaired serial visual search in children with developmental dyslexia. Annals of the New York Academy of Sciences, 1145, 199–211. doi:10.1196/annals.1416.021.

    Article  Google Scholar 

  • Sireteanu, R., Goertz, R., Bachert, I., & Wandert, T. (2005). Children with developmental dyslexia show a left visual “minineglect”. Vision Research, 45(25–26), 3075–3082. doi:10.1016/j.visres.2005.07.030.

    Article  Google Scholar 

  • Tolman, E. C. (1948). Cognitive maps in rats and men. Psychology Review, 55(4), 189–208.

    Article  Google Scholar 

  • Torgesen, J. K. (2000). Individual differences in response to early interventions in reading: the lingering problem of treatment resisters. Learning Disabilities Research & Practice, 15(1), 55–64.

    Article  Google Scholar 

  • Truong, D. T., Che, A., Rendall, A. R., Szalkowski, C. E., LoTurco, J. J., Galaburda, A. M., & Fitch, H. R. (2014). Mutation of Dcdc2 in mice leads to impairments in auditory processing and memory ability. Genes, Brain, and Behavior, 13(8), 802–811. doi:10.1111/gbb.12170.

    Article  Google Scholar 

  • van Gerven, D. J., Schneider, A. N., Wuitchik, D. M., & Skelton, R. W. (2012). Direct measurement of spontaneous strategy selection in a virtual Morris water maze shows females choose an allocentric strategy at least as often as males do. Behavioral Neuroscience, 126(3), 465–478. doi:10.1037/a0027992.

    Article  Google Scholar 

  • Woodcock, R. W., McGrew, K. S., & Mather, N. (2001). Woodcock-Johnson III tests of achievement. Riverside: Riverside Publishing.

    Google Scholar 

  • Yuan, P., Daugherty, A. M., & Raz, N. (2014). Turning bias in virtual spatial navigation: age-related differences and neuroanatomical correlates. Biological Psychology, 96, 8–19. doi:10.1016/j.biopsycho.2013.10.009.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Pesky Foundation Research Grant to LAG and EJ. We would like to thank Dr. Matthew Taylor for his work in the initial planning of the virtual maze and Dr. Dongnhu Truong for helpful comments during the preparation of the manuscript. We would like to thank Li Guo, Stephanie Kass, and Genevieve Curtis for assistance during data collection in study 1 and Anna Maderis, Katelyn Smith, Carrie Semmelroth, Laura Moylan, and Pragnyaa Chakravanthy for assistance in study 2. MM designed the experiments and ran the participants in study 1; NE created and maintained the virtual maze and analysis program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa A. Gabel.

Ethics declarations

All procedures in study 1 involving animal subjects were approved by the Institutional Animal Care and Use Committee at Lafayette College. All procedures involving human participants in study 1 were approved by the Institutional Review Board at Lafayette College and those in study 2 were approved by the Institutional Review Boards and Boise State University and Lafayette College.

Additional information

Monica Manglani and Nicholas Escalona contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabel, L.A., Manglani, M., Escalona, N. et al. Translating dyslexia across species. Ann. of Dyslexia 66, 319–336 (2016). https://doi.org/10.1007/s11881-016-0125-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11881-016-0125-3

Keywords

Navigation