Skip to main content
Log in

Virtual Reality Water Maze Navigation in Children with Neurofibromatosis Type 1 and Reading Disability: an Exploratory Study

  • Published:
Journal of Pediatric Neuropsychology Aims and scope Submit manuscript

Abstract

Deficits in visuospatial skills have long been considered a hallmark characteristic of the neurofibromatosis type 1 (NF1) cognitive profile. Yet, whether previously used measures reveal the full nature of these visuospatial deficits in NF1 remains unclear. An exploratory study was conducted using a virtual reality water maze developed to serve as a human analog of the Morris water maze animal model. Children with NF1 were compared to children who did not have NF1 (typically developing; TD), with the two groups matched on reading skill due to the common occurrence of reading difficulties (RD) in NF1. Metrics of virtual navigation revealed that the TD group (n = 14) generally outperformed NF1 (n = 17) on learning trials of the water maze on multiple measures (path length, latency, Gallagher cumulative search error). Results remained significant even when controlling for IQ and working memory. However, the final (probe) trial showed no significant difference between the groups. These preliminary results suggest that though NF1 initially performs poorly on virtual navigation, with additional practice this group resembles TD children. These findings prompt future avenues of research to further explore potential unique relations between visuospatial skill and reading skill in NF1 as well as to further delineate individuals with NF1 from their typically developing peers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anastasaki, C., Orozco, P., & Gutmann, D. H. (2022). RAS and beyond: the many faces of the neurofibromatosis type 1 protein. Disease Models & Mechanisms, 15(2). https://doi.org/10.1242/dmm.049362

  • Barker, D., Wright, E., Nguyen, K., Cannon, L., Fain, P., Goldgar, D., Bishop, D. T., Carey, J., Baty, B., Kivlin, J., Willard, H., Waye, J. S., Greig, G., Leinwand, L., Nakamura, Y., O’Connell, P., Leppert, M., Lalouel, J. M., White, R., & Skolnick, M. (1987). Gene for von Recklinghausen neurofibromatosis is in the pericentromeric region of chromosome 17. Science, 236(4805), 1100–1102. https://doi.org/10.1126/science.3107130

    Article  Google Scholar 

  • Barquero, L., Sefcik, A., Cutting, L., & Rimrodt, S. (2015). Teaching reading to children with neurofibromatosis type 1: A clinical trial with random assignment to different approaches. Developmental Medicine and Child Neurology, 57(12), 1150–1158. https://doi.org/10.1111/dmcn.12769

  • Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01

  • Beaussart, M. L., Barbarot, S., Mauger, C., & Roy, A. (2018). Systematic review and meta-analysis of executive functions in preschool and school-age children with Neurofibromatosis type 1. Journal of the International Neuropsychological Society, 24(9), 977–994. https://doi.org/10.1017/S1355617718000383

    Article  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate : A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57(1), 289–300.

    Google Scholar 

  • Benton, A. L., Hamsher, K. D., Varner, N. R., & Spreen, O. (1983). Contributions to neuropsychological assessment: A clinical manual. Oxford University Press.

    Google Scholar 

  • Brewer, V. R., Moore, B. D., & Hiscock, M. (1997). Learning disability subtypes in children with neurofibromatosis. Journal of Learning Disabilities, 30(5), 521–533 http://www.ncbi.nlm.nih.gov/pubmed/9293234

    Article  Google Scholar 

  • Clements-Stephens, A. M., Rimrodt, S. L., Gaur, P., & Cutting, L. E. (2008). Visuospatial processing in children with neurofibromatosis type 1. Neuropsychologia, 46(2), 690–697. https://doi.org/10.1016/j.neuropsychologia.2007.09.013

  • Costa, R. M., Federov, N. B., Kogan, J. H., Murphy, G. G., Stern, J., Ohno, M., Kucherlapati, R., Jacks, T., & Silva, A. J. (2002). Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature, 415(6871), 526–530. https://doi.org/10.1038/nature711

    Article  Google Scholar 

  • Cutting, L. E., & Levine, T. M. (2010). Cognitive profile of children with neurofibromatosis and reading disabilities. Child Neuropsychology : A Journal on Normal and Abnormal Development in Childhood and Adolescence, 16(5), 417–432. https://doi.org/10.1080/09297041003761985

  • Cutting, L. E., Koth, C. W., & Denckla, M. B. (2000). How children with neurofibromatosis type 1 differ from “typical” learning disabled clinic attenders: nonverbal learning disabilities revisited. Developmental Neuropsychology, 17(1), 29–47. https://doi.org/10.1207/S15326942DN1701_02

  • Descheemaeker, M. J., Plasschaert, E., Frijns, J. P., & Legius, E. (2013). Neuropsychological profile in adults with neurofibromatosis type 1 compared to a control group. Journal of Intellectual Disability Research, 57(9), 874–886. https://doi.org/10.1111/j.1365-2788.2012.01648.x

  • Devan, B. D., & Hendricks, M. A. (2018). Reproducibility of incentive motivation effects on standard place task performance of the virtual Morris water maze in humans: Neuropsychological implications. Journal of Articles in Support of the Null Hypothesis, 15(1), 13–22.

    Google Scholar 

  • Doser, K., Belmonte, F., Andersen, K. K., Østergaard, J. R., Hove, H., Handrup, M. M., & Ejerskov, C. (2022). School performance of children with neuro fi bromatosis 1 : a nationwide population-based study. January. https://doi.org/10.1038/s41431-022-01149-z

  • Friedman, J. M. (1999). Epidemiology of neurofibromatosis type 1. American Journal of Medical Genetics - Seminars in Medical Genetics, 89(1), 1–6. https://doi.org/10.1002/(SICI)1096-8628(19990326)89:1<1::AID-AJMG3>3.0.CO;2-8

    Article  Google Scholar 

  • Gabel, L. A., Voss, K., Johnson, E., Lindström, E. R., Truong, D. T., Murray, E. M., Cariño, K., Nielsen, C. M., Paniagua, S., & Gruen, J. R. (2021). Identifying dyslexia: Link between maze learning and dyslexia susceptibility gene, DCDC2, in young children. Developmental Neuroscience, 43(2), 116–133. https://doi.org/10.1159/000516667

  • Gallagher, M., Burwell, R., & Burchinal, M. R. (1993). Severity of spatial learning impairment in aging: Development of a learning index for performance in the Morris water maze. Behavioral Neuroscience, 107(4), 618–626.

    Article  Google Scholar 

  • Gioia, G. A., Isquith, P. K., Guy, S. C., & Kenworthy, L. (2015). BRIEF-2: Behavioral Rating Inventory of Executive Function, Second Edition. Lutz, FL, Psychological assessment resources.

    Google Scholar 

  • Hammill, D. D., Pearson, N. A., & Voress, J. K. (1993). Developmental Test of Visual Perception (2nd ed.). PRO-ED Inc..

    Google Scholar 

  • Hammill, D. D., Wiederholt, J. L., Allen, E. A. (2014). Test of silent word reading efficiency (2nd ed.). PRO-ED.

  • Harrison, F. E., Hosseini, A. H., & McDonald, M. P. (2009). Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks. Behavioural Brain Research, 198(1), 247–251. https://doi.org/10.1016/J.BBR.2008.10.015

    Article  Google Scholar 

  • Hawthorne, E. L., & Baker, M. R. (2017). What are the Gallagher-Baker indices in Water Maze? http://hvsimage.com/permalink/gallagher-baker-indices/

  • HVS Image. (2016). Virtual reality morris water maze (Version 2017.7) [Computer software]. HVS Image.

  • Hyman, S. L., Shores, A., & North, K. N. (2005). The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology, 65(1), 1037–1044.

    Article  Google Scholar 

  • Hyman, S. L., Shores, E. A., & North, K. N. (2006). Learning disabilities in children with neurofibromatosis type 1: Subtypes, cognitive profile, and attention-deficit-hyperactivity disorder. Developmental Medicine and Child Neurology, 48(12), 973–977. https://doi.org/10.1017/S0012162206002131

    Article  Google Scholar 

  • Krab, L. C., Aarsen, F. K., de Goede-Bolder, A., Catsman-Berrevoets, C. E., Arts, W. F., Moll, H. A., & Elgersma, Y. (2008). Impact of neurofibromatosis type 1 on school performance. Journal of Child Neurology, 23(9), 1002–1010. https://doi.org/10.1177/0883073808316366

    Article  Google Scholar 

  • Lam, V., Takechi, R., Albrecht, M. A., D’Alonzo, Z. J., Graneri, L., Hackett, M. J., Coulson, S., Fimognari, N., Nesbit, M., & Mamo, J. C. L. (2018). Longitudinal performance of senescence accelerated mouse prone-strain 8 (SAMP8) mice in an olfactory-visual water maze challenge. Frontiers in Behavioral Neuroscience, 12(August), 1–8. https://doi.org/10.3389/fnbeh.2018.00174

    Article  Google Scholar 

  • Legius, E., Messiaen, L., Wolkenstein, P., Pancza, P., Avery, R. A., Berman, Y., Blakeley, J., Babovic-Vuksanovic, D., Cunha, K. S., Ferner, R., Fisher, M. J., Friedman, J. M., Gutmann, D. H., Kehrer-Sawatzki, H., Korf, B. R., Mautner, V. F., Peltonen, S., Rauen, K. A., Riccardi, V., et al. (2021). Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation. Genetics in Medicine, 23(8), 1506–1513. https://doi.org/10.1038/s41436-021-01170-5

    Article  Google Scholar 

  • Lehtonen, A., Howie, E., Trump, D., & Huson, S. M. (2013). Behaviour in children with neurofibromatosis type 1: cognition, executive function, attention, emotion, and social competence. Developmental Medicine and Child Neurology, 55(2), 111–125. https://doi.org/10.1111/j.1469-8749.2012.04399.x

    Article  Google Scholar 

  • Levine, T. M., Materek, A., Abel, J., O’Donnell, M., & Cutting, L. E. (2006). Cognitive profile of neurofibromatosis type 1. Seminars in Pediatric Neurology, 13(1), 8–20. https://doi.org/10.1016/j.spen.2006.01.006

  • Li, W., Cui, Y., Kushner, S. A., Brown, R. A. M., Jentsch, J. D., Frankland, P. W., Cannon, T. D., & Silva, A. J. (2005). The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Current Biology, 15(21), 1961–1967. https://doi.org/10.1016/j.cub.2005.09.043

    Article  Google Scholar 

  • Littler, M., & Morton, N. E. (1990). Segregation analysis of peripheral neurofibromatosis (NF1). Journal of Medical Genetics, 27(5), 307–310. https://doi.org/10.1136/jmg.27.5.307

    Article  Google Scholar 

  • Monroe, C. L., Dahiya, S., & Gutmann, D. H. (2017). Dissecting clinical heterogeneity in neurofibromatosis type 1. Annual Review of Pathology: Mechanisms of Disease, 12, 53–74. https://doi.org/10.1146/annurev-pathol-052016-100228

    Article  Google Scholar 

  • Morris, R. G. M. (1981). Spatial localization does not require the presence of local cues. Learning and Motivation, 12(2), 239–260. https://doi.org/10.1016/0023-9690(81)90020-5

    Article  Google Scholar 

  • Morris, R. G. M., Garrud, P., Rawlins, J. N. P., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(June), 681–683.

    Article  Google Scholar 

  • North, K. (1993). Neurofibromatosis Type 1 : Review Australian Clinic. Journal of Child Neurology, 8, 395–402. https://doi.org/10.1177/2F088307389300800421

    Article  Google Scholar 

  • North, K. (2000). Neurofibromatosis type 1. American Journal of Medical Genetics, 97(2), 119–127 http://www.ncbi.nlm.nih.gov/pubmed/11180219

    Article  Google Scholar 

  • O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171–175. https://doi.org/10.1016/0006-8993(71)90358-1

    Article  Google Scholar 

  • O’Mara, S. M., & Aggleton, J. P. (2019). Space and memory (far) beyond the hippocampus: Many subcortical structures also support cognitive mapping and mnemonic processing. Frontiers in Neural Circuits, 13(August), 1–12. https://doi.org/10.3389/fncir.2019.00052

    Article  Google Scholar 

  • Orraca-Castillo, M., Estévez-Pérez, N., & Reigosa-Crespo, V. (2014). Neurocognitive profiles of learning disabled children with neurofibromatosis type 1. Frontiers in Human Neuroscience, 8(JUNE), 1–9. https://doi.org/10.3389/fnhum.2014.00386

  • Pereira, I. T., & Burwell, R. D. (2015). Using the spatial learning index to evaluate performance on the water maze. Behavioral Neuroscience, 129(4), 533–539. https://doi.org/10.1037/bne0000078

    Article  Google Scholar 

  • R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/

  • Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin, 2(6), 110–114 https://www.jstor.org/stable/3002019

    Article  Google Scholar 

  • Schoenfeld, R., Schiffelholz, T., Beyer, C., Leplow, B., & Foreman, N. (2017). Variations of the Morris water maze task to comparatively assess human and rodent place navigation. Neurobiology of Learning and Memory, 139, 117–127. https://doi.org/10.1016/j.nlm.2016.12.022

    Article  Google Scholar 

  • Schrimsher, G. W., Billingsley, R. L., Slopis, J. M., & Moore, B. D. (2003). Visual-spatial performance deficits in children with neurofibromatosis type-1. American Journal of Medical Genetics, 120 A(3), 326–330. https://doi.org/10.1002/ajmg.a.20048

  • Seizinger, B. R., Rouleau, G. A., Ozelius, L. J., Lane, A. H., Faryniarz, A. G., Chao, M. V., Huson, S., Korf, B. R., Parry, D. M., Pericak-Vance, M. A., Collins, F. S., Hobbs, W. J., Falcone, B. G., Iannazzi, J. A., Roy, J. C., St George-Hyslop, P. H., Tanzi, R. E., Bothwell, M. A., Upadhyaya, M., et al. (1987). Genetic linkage of von Recklinghausen neurofibromatosis to the nerve growth factor receptor gene. Cell, 49(5), 589–594. https://doi.org/10.1016/0092-8674(87)90534-4

    Article  Google Scholar 

  • Thornberry, C., Cimadevilla, J. M., & Commins, S. (2021). Virtual Morris water maze: opportunities and challenges. Reviews in the Neurosciences, 32(8), 887–903. https://doi.org/10.1515/revneuro-2020-0149

    Article  Google Scholar 

  • Torgesen, J. K., Wagner, R. K, & Rashotte, C. A. (2012). Test of word reading efficiency, second edition (TOWRE-2). PRO-ED.

  • Ullrich, N. J., Ayr, L., Leaffer, E., Irons, M. B., & Rey-Casserly, C. (2010). Pilot study of a novel computerized task to assess spatial learning in children and adolescents with neurofibromatosis type i. Journal of Child Neurology, 25(10), 1195–1202. https://doi.org/10.1177/0883073809358454

    Article  Google Scholar 

  • Ullrich, N. J., Payne, J. M., Walsh, K. S., Cutter, G., Packer, R., North, K., & Rey-Casserly, C. (2020). Visual spatial learning outcomes for clinical trials in neurofibromatosis type 1. Annals of Clinical Translational Neurology, 7(2), 245–249. https://doi.org/10.1002/acn3.50976

    Article  Google Scholar 

  • Van Eylen, L., Plasschaert, E., Wagemans, J., Boets, B., Legius, E., Steyaert, J., & Noens, I. (2017). Visuoperceptual processing in children with neurofibromatosis type 1: True deficit or artefact? American Journal of Medical GeneticsPart B: Neuropsychiatric Genetics, 174(4), 342–358. https://doi.org/10.1002/ajmg.b.32522

    Article  Google Scholar 

  • Wagner, R. K., Torgesesn, J. K., Rashotte, C. A., & Pearson, N. A. (2013). Comprehensive test of phonological processing (2nd ed.) PRO-ED.

  • Wechsler, D. (2011). Wechsler Abbreviated Scale of Intelligence–Second Edition (WASI-II). NCS Pearson.

  • Wechsler, D. (2014). Wechsler intelligence scale for children (WISC-V) (5th ed.). Pearson.

  • White, A. L., Boynton, G. M., & Yeatman, J. D. (2019). The link between reading ability and visual spatial attention across development. Cortex, 121, 44–59. https://doi.org/10.1016/j.cortex.2019.08.011

  • Wiig, E. H., Semel, E., & Secord, W. A. (2013). Clinical evaluation of language fundamentals, (5th ed.) (CELF-5). NCS Pearson.

  • Woodcock, R. W. (2011). Woodcock reading matery tests, third edition. Pearson.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura A. Barquero.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Archangel, M.A., Del Tufo, S.N., Cutting, L.E. et al. Virtual Reality Water Maze Navigation in Children with Neurofibromatosis Type 1 and Reading Disability: an Exploratory Study. J Pediatr Neuropsychol 8, 155–167 (2022). https://doi.org/10.1007/s40817-022-00132-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40817-022-00132-2

Keywords

Navigation