Skip to main content

Advertisement

Log in

Antibody-Drug Conjugates for Melanoma and Other Skin Malignancies

  • Skin Cancer (T Ito, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

While most skin malignancies are successfully treated with surgical excision, advanced and metastatic skin malignancies still often have poor long-term outcomes despite therapeutic advances. Antibody-drug conjugates (ADCs) serve as a potentially promising novel therapeutic approach to treat advanced skin cancers as they combine antibody-associated antigen specificity with cytotoxic anti-tumor effects, thereby maximizing efficacy and minimizing systemic toxicity. While no ADCs have gained regulatory approval for advanced skin cancers, several promising agents are undergoing preclinical and clinical investigation. In addition to identifying and validating skin cancer antigen targets, the key to maximizing therapeutic success is the careful development of each component of the ADC complex: antibodies, cytotoxic drugs, and linkers. It is the optimization of each of these components that will be integral in overcoming resistance, maximizing safety, and improving long-term clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Maguire LH, Thomas AR, Goldstein AM. Tumors of the neural crest: common themes in development and cancer. Dev Dyn. 2015;244(3):311–22.

    Article  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  3. Saginala K, Barsouk A, Aluru JS, Rawla P, Barsouk A. Epidemiology of melanoma. Med Sci (Basel). 2021;9(4):63.

    CAS  Google Scholar 

  4. Joyce D, Skitzki JJ. Surgical management of primary cutaneous melanoma. Surg Clin North Am. 2020;100(1):61–70.

    Article  PubMed  Google Scholar 

  5. Patel PM, Suciu S, Mortier L, Kruit WH, Robert C, Schadendorf D, et al. Extended schedule, escalated dose temozolomide versus dacarbazine in stage IV melanoma: final results of a randomised phase III study (EORTC 18032). Eur J Cancer. 2011;47(10):1476–83.

    Article  CAS  PubMed  Google Scholar 

  6. Goel VK, Lazar AJ, Warneke CL, Redston MS, Haluska FG. Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. J Investig Dermatol. 2006;126(1):154–60.

    Article  CAS  PubMed  Google Scholar 

  7. Jenkins RW, Fisher DE. Treatment of advanced melanoma in 2020 and beyond. J Investig Dermatol. 2021;141(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  8. Carlino MS, Larkin J, Long GV. Immune checkpoint inhibitors in melanoma. Lancet. 2021;398(10304):1002–14.

    Article  CAS  PubMed  Google Scholar 

  9. Dickson PV, Gershenwald JE. Staging and prognosis of cutaneous melanoma. Surg Oncol Clin N Am. 2011;20(1):1–17.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381(16):1535–46.

    Article  CAS  PubMed  Google Scholar 

  11. Robert C, Grob JJ, Stroyakovskiy D, Karaszewska B, Hauschild A, Levchenko E, et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med. 2019;381(7):626–36.

    Article  CAS  PubMed  Google Scholar 

  12. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann Oncol. 2019;30(4):582–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372(1):30–9.

    Article  PubMed  Google Scholar 

  14. Atkins MB, Lee SJ, Chmielowski B, Ribas A, Tarhini AA, Truong T-G, et al. DREAMseq (doublet, randomized evaluation in advanced melanoma sequencing): a phase III trial—ECOG-ACRIN EA6134. J Clin Oncol. 2021;39(36_suppl):356154.

    Article  Google Scholar 

  15. Motaparthi K, Kapil JP, Velazquez EF. Cutaneous squamous cell carcinoma: review of the eighth edition of the American Joint Committee on Cancer Staging Guidelines, Prognostic Factors, and Histopathologic Variants. Adv Anat Pathol. 2017;24(4):171–94.

    Article  PubMed  Google Scholar 

  16. Stratigos AJ, Garbe C, Dessinioti C, Lebbe C, Bataille V, Bastholt L, et al. European interdisciplinary guideline on invasive squamous cell carcinoma of the skin: Part 2. Treatment. Eur J Cancer. 2020;128:83–102.

    Article  CAS  PubMed  Google Scholar 

  17. Migden MR, Rischin D, Schmults CD, Guminski A, Hauschild A, Lewis KD, et al. PD-1 Blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med. 2018;379(4):341–51.

    Article  CAS  PubMed  Google Scholar 

  18. Markham A, Duggan S. Cemiplimab: first global approval. Drugs. 2018;78(17):1841–6.

    Article  CAS  PubMed  Google Scholar 

  19. Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319(5866):1096–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gauci ML, Aristei C, Becker JC, Blom A, Bataille V, Dreno B, et al. Diagnosis and treatment of Merkel cell carcinoma: European consensus-based interdisciplinary guideline - Update 2022. Eur J Cancer. 2022;171:203–31.

    Article  CAS  PubMed  Google Scholar 

  21. Nghiem PT, Bhatia S, Lipson EJ, Kudchadkar RR, Miller NJ, Annamalai L, et al. PD-1 blockade with pembrolizumab in advanced Merkel-cell Carcinoma. N Engl J Med. 2016;374(26):2542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. D'Angelo SP, Bhatia S, Brohl AS, Hamid O, Mehnert JM, Terheyden P, et al. Avelumab in patients with previously treated metastatic Merkel cell carcinoma: long-term data and biomarker analyses from the single-arm phase 2 JAVELIN Merkel 200 trial. J Immunother Cancer. 2020;8(1):e000674.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Eroglu Z, Ribas A. Combination therapy with BRAF and MEK inhibitors for melanoma: latest evidence and place in therapy. Ther Adv Med Oncol. 2016;8(1):48–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haugh AM, Salama AKS, Johnson DB. Advanced melanoma: resistance mechanisms to current therapies. Hematol Oncol Clin North Am. 2021;35(1):111–28.

    Article  PubMed  Google Scholar 

  25. Wang DY, Salem J-E, Cohen JV, Chandra S, Menzer C, Ye F, et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 2018;4(12):1721–8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Barila G, Rizzi R, Zambello R, Musto P. Drug conjugated and bispecific antibodies for multiple myeloma: improving immunotherapies off the shelf. Pharmaceuticals (Basel). 2021;14(1):40.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.

    Article  PubMed  Google Scholar 

  28. Ortho Multicenter Transplant Study G. A randomized clinical trial of OKT3 monoclonal antibody for acute rejection of cadaveric renal transplants. N Engl J Med. 1985;313(6):337–42.

    Article  Google Scholar 

  29. Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. MAbs. 2015;7(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  30. Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–87.

    Article  CAS  PubMed  Google Scholar 

  32. Shefet-Carasso L, Benhar I. Antibody-targeted drugs and drug resistance--challenges and solutions. Drug Resist Updat. 2015;18:36–46.

    Article  PubMed  Google Scholar 

  33. Weiner GJ. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer. 2015;15(6):361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rasmussen SK, Rasmussen LK, Weilguny D, Tolstrup AB. Manufacture of recombinant polyclonal antibodies. Biotechnol Lett. 2007;29(6):845–52.

    Article  CAS  PubMed  Google Scholar 

  35. Chau CH, Steeg PS, Figg WD. Antibody-drug conjugates for cancer. Lancet. 2019;394(10200):793–804.

    Article  CAS  PubMed  Google Scholar 

  36. Hoffmann RM, Coumbe BGT, Josephs DH, Mele S, Ilieva KM, Cheung A, et al. Antibody structure and engineering considerations for the design and function of antibody drug conjugates (ADCs). Oncoimmunology. 2018;7(3):e1395127.

    Article  PubMed  Google Scholar 

  37. Esnault C, Schrama D, Houben R, Guyetant S, Desgranges A, Martin C, et al. Antibody-drug conjugates as an emerging therapy in oncodermatology. Cancers (Basel). 2022;14(3):778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu B, Liu D. Correction to: Antibody-drug conjugates in clinical trials for lymphoid malignancies and multiple myeloma. J Hematol Oncol. 2020;13(1):65.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Damelin M, Zhong W, Myers J, Sapra P. Evolving strategies for target selection for antibody-drug conjugates. Pharm Res. 2015;32(11):3494–507.

    Article  CAS  PubMed  Google Scholar 

  40. Thomas A, Teicher BA, Hassan R. Antibody–drug conjugates for cancer therapy. Lancet Oncol. 2016;17(6):e254–e62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shah N, Chari A, Scott E, Mezzi K, Usmani SZ. B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia. 2020;34(4):985–1005.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther. 2022;7(1):93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beck A, Goetsch L, Dumontet C, Corvaia N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16(5):315–37.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao P, Zhang Y, Li W, Jeanty C, Xiang G, Dong Y. Recent advances of antibody drug conjugates for clinical applications. Acta Pharm Sin B. 2020;10(9):1589–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Birrer MJ, Moore KN, Betella I, Bates RC. Antibody-drug conjugate-based therapeutics: state of the science. J Natl Cancer Inst. 2019;111(6):538–49.

    Article  PubMed  Google Scholar 

  46. Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018;9(1):33–46.

    Article  CAS  PubMed  Google Scholar 

  47. Wolska-Washer A, Robak T. Safety and tolerability of antibody-drug conjugates in cancer. Drug Saf. 2019;42(2):295–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao H, Atkinson J, Gulesserian S, Zeng Z, Nater J, Ou J, et al. Modulation of macropinocytosis-mediated internalization decreases ocular toxicity of antibody-drug conjugates. Cancer Res. 2018;78(8):2115–26.

    Article  CAS  PubMed  Google Scholar 

  49. Norsworthy KJ, Ko CW, Lee JE, Liu J, John CS, Przepiorka D, et al. FDA approval summary: mylotarg for treatment of patients with relapsed or refractory CD33-positive acute myeloid leukemia. Oncologist. 2018;23(9):1103–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363(19):1812–21.

    Article  CAS  PubMed  Google Scholar 

  51. Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol. 2012;30(18):2190–6.

    Article  CAS  PubMed  Google Scholar 

  52. Koga Y, Sekimizu M, Iguchi A, Kada A, Saito AM, Asada R, et al. Phase I study of brentuximab vedotin (SGN-35) in Japanese children with relapsed or refractory CD30-positive Hodgkin's lymphoma or systemic anaplastic large cell lymphoma. Int J Hematol. 2020;111(5):711–8.

    Article  CAS  PubMed  Google Scholar 

  53. Scott LJ. Brentuximab vedotin: a review in CD30-positive Hodgkin lymphoma. Drugs. 2017;77(4):435–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Inotuzumab ozogamicin (Besponsa)--an antibody-drug conjugate for ALL. Med Lett Drugs Ther. 2018;60(1547):e90-e1.

  56. Anderson TS, Wooster AL, La-Beck NM, Saha D, Lowe DB. Antibody-drug conjugates: an evolving approach for melanoma treatment. Melanoma Res. 2021;31(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  57. Errington JA, Conway RM, Walsh-Conway N, Browning J, Freyer C, Cebon J, et al. Expression of cancer-testis antigens (MAGE-A1, MAGE-A3/6, MAGE-A4, MAGE-C1 and NY-ESO-1) in primary human uveal and conjunctival melanoma. Br J Ophthalmol. 2012;96(3):451–8.

    Article  CAS  PubMed  Google Scholar 

  58. Lezcano C, Jungbluth AA, Nehal KS, Hollmann TJ, Busam KJ. PRAME expression in melanocytic tumors. Am J Surg Pathol. 2018;42(11):1456–65.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Epping MT, Bernards R. A causal role for the human tumor antigen preferentially expressed antigen of melanoma in cancer. Cancer Res. 2006;66(22):10639–42.

    Article  CAS  PubMed  Google Scholar 

  60. Rose AAN, Biondini M, Curiel R, Siegel PM. Targeting GPNMB with glembatumumab vedotin: current developments and future opportunities for the treatment of cancer. Pharmacol Ther. 2017;179:127–41.

    Article  CAS  PubMed  Google Scholar 

  61. Rose AA, Annis MG, Frederick DT, Biondini M, Dong Z, Kwong L, et al. MAPK pathway inhibitors sensitize BRAF-mutant melanoma to an antibody-drug conjugate targeting GPNMB. Clin Cancer Res. 2016;22(24):6088–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Qian X, Mills E, Torgov M, LaRochelle WJ, Jeffers M. Pharmacologically enhanced expression of GPNMB increases the sensitivity of melanoma cells to the CR011-vcMMAE antibody-drug conjugate. Mol Oncol. 2008;2(1):81–93.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ott PA, Pavlick AC, Johnson DB, Hart LL, Infante JR, Luke JJ, et al. A phase 2 study of glembatumumab vedotin, an antibody-drug conjugate targeting glycoprotein NMB, in patients with advanced melanoma. Cancer. 2019;125(7):1113–23.

    Article  CAS  PubMed  Google Scholar 

  64. Ott PA, Hamid O, Pavlick AC, Kluger H, Kim KB, Boasberg PD, et al. Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with advanced melanoma. J Clin Oncol. 2014;32(32):3659–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hasanov M, Rioth MJ, Kendra K, Hernandez-Aya L, Joseph RW, Williamson S, et al. A phase II study of glembatumumab vedotin for metastatic uveal melanoma. Cancers (Basel). 2020;12(8).

  66. Chen Y, Chalouni C, Tan C, Clark R, Venook R, Ohri R, et al. The melanosomal protein PMEL17 as a target for antibody drug conjugate therapy in melanoma. J Biol Chem. 2012;287(29):24082–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Puzanov I, LoRusso P, Papadopoulos KP, Chen CT, LeBruchec Y, He X, et al. A phase 1b, open-label, dose-escalation study to evaluate camidanlumab tesirine (Cami) as monotherapy in patients (pts) with advanced solid tumors. J Clin Oncol. 2021;39(15_suppl):2556.

    Article  Google Scholar 

  68. Liu X, Liu S, Lyu H, Riker AI, Zhang Y, Liu B. Development of effective therapeutics targeting HER3 for cancer treatment. Biol Proced Online. 2019;21:5.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Boni V, Sharma MR, Patnaik A. The resurgence of antibody drug conjugates in cancer therapeutics: novel targets and payloads. Am Soc Clin Oncol Educ Book. 2020;40:1–17.

    PubMed  Google Scholar 

  70. Reschke M, Mihic-Probst D, van der Horst EH, Knyazev P, Wild PJ, Hutterer M, et al. HER3 is a determinant for poor prognosis in melanoma. Clin Cancer Res. 2008;14(16):5188–97.

    Article  CAS  PubMed  Google Scholar 

  71. Ocana A, Vera-Badillo F, Seruga B, Templeton A, Pandiella A, Amir E. HER3 overexpression and survival in solid tumors: a meta-analysis. J Natl Cancer Inst. 2013;105(4):266–73.

    Article  CAS  PubMed  Google Scholar 

  72. Abel EV, Basile KJ, Kugel CH 3rd, Witkiewicz AK, Le K, Amaravadi RK, et al. Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. J Clin Invest. 2013;123(5):2155–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang N, Chang Y, Rios A, An Z. HER3/ErbB3, an emerging cancer therapeutic target. Acta Biochim Biophys Sin (Shanghai). 2016;48(1):39–48.

    Article  PubMed  Google Scholar 

  74. Capone E, Lamolinara A, D’Agostino D, Rossi C, De Laurenzi V, Iezzi M, et al. EV20-mediated delivery of cytotoxic auristatin MMAF exhibits potent therapeutic efficacy in cutaneous melanoma. J Control Release. 2018;277:48–56.

    Article  CAS  PubMed  Google Scholar 

  75. Hashimoto Y, Koyama K, Kamai Y, Hirotani K, Ogitani Y, Zembutsu A, et al. A novel HER3-targeting antibody–drug conjugate, U3-1402, exhibits potent therapeutic efficacy through the delivery of cytotoxic payload by efficient internalization. Clin Cancer Res. 2019;25(23):7151–61.

    Article  CAS  PubMed  Google Scholar 

  76. Feneyrolles C, Spenlinhauer A, Guiet L, Fauvel B, Daydé-Cazals B, Warnault P, et al. Axl kinase as a key target for oncology: focus on small molecule inhibitors. Mol Cancer Ther. 2014;13(9):2141–8.

    Article  CAS  PubMed  Google Scholar 

  77. Tian Y, Zhang Z, Miao L, Yang Z, Yang J, Wang Y, et al. Anexelekto (AXL) Increases resistance to EGFR-TKI and activation of AKT and ERK1/2 in non-small cell lung cancer cells. Oncol Res. 2016;24(5):295–303.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nyakas M, Fleten KG, Haugen MH, Engedal N, Sveen C, Farstad IN, et al. AXL inhibition improves BRAF-targeted treatment in melanoma. Sci Rep. 2022;12(1):5076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gao X, Xue D, Cheng J, Zhang X, Cai X. Inhibition of Axl promotes the therapeutic effect of targeted inhibition of the PI3K/Akt pathway in NRAS mutant melanoma cells. J Oncol. 2022;2022:2946929.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Byers LA, Diao L, Wang J, Saintigny P, Girard L, Peyton M, et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res. 2013;19(1):279–90.

    Article  CAS  PubMed  Google Scholar 

  81. Boshuizen J, Koopman LA, Krijgsman O, Shahrabi A, van den Heuvel EG, Ligtenberg MA, et al. Cooperative targeting of melanoma heterogeneity with an AXL antibody-drug conjugate and BRAF/MEK inhibitors. Nat Med. 2018;24(2):203–12.

    Article  CAS  PubMed  Google Scholar 

  82. Saldana-Caboverde A, Kos L. Roles of endothelin signaling in melanocyte development and melanoma. Pigment Cell Melanoma Res. 2010;23(2):160–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Asundi J, Reed C, Arca J, McCutcheon K, Ferrando R, Clark S, et al. An antibody-drug conjugate targeting the endothelin B receptor for the treatment of melanoma. Clin Cancer Res. 2011;17(5):965–75.

    Article  CAS  PubMed  Google Scholar 

  84. Sandhu S, McNeil CM, LoRusso P, Patel MR, Kabbarah O, Li C, et al. Phase I study of the anti-endothelin B receptor antibody-drug conjugate DEDN6526A in patients with metastatic or unresectable cutaneous, mucosal, or uveal melanoma. Investig New Drugs. 2020;38(3):844–54.

    Article  CAS  Google Scholar 

  85. Miettinen M, Lasota J. KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol. 2005;13(3):205–20.

    Article  CAS  PubMed  Google Scholar 

  86. Abrams T, Connor A, Fanton C, Cohen SB, Huber T, Miller K, et al. Preclinical antitumor activity of a novel anti-c-KIT antibody-drug conjugate against mutant and wild-type c-KIT-positive solid tumors. Clin Cancer Res. 2018;24(17):4297–308.

    Article  CAS  PubMed  Google Scholar 

  87. Cazzamalli S, Ziffels B, Widmayer F, Murer P, Pellegrini G, Pretto F, et al. Enhanced therapeutic activity of non-internalizing small-molecule-drug conjugates targeting carbonic anhydrase IX in combination with targeted interleukin-2. Clin Cancer Res. 2018;24(15):3656–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gebleux R, Stringhini M, Casanova R, Soltermann A, Neri D. Non-internalizing antibody-drug conjugates display potent anti-cancer activity upon proteolytic release of monomethyl auristatin E in the subendothelial extracellular matrix. Int J Cancer. 2017;140(7):1670–9.

    Article  CAS  PubMed  Google Scholar 

  89. Dal Corso A, Gebleux R, Murer P, Soltermann A, Neri D. A non-internalizing antibody-drug conjugate based on an anthracycline payload displays potent therapeutic activity in vivo. J Control Release. 2017;264:211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Capone E, Lamolinara A, Pastorino F, Gentile R, Ponziani S, Di Vittorio G, et al. Targeting vesicular LGALS3BP by an antibody-drug conjugate as novel therapeutic strategy for neuroblastoma. Cancers (Basel). 2020;12(10):2989.

    Article  CAS  PubMed Central  Google Scholar 

  91. Giansanti F, Capone E, Ponziani S, Piccolo E, Gentile R, Lamolinara A, et al. Secreted Gal-3BP is a novel promising target for non-internalizing antibody-drug conjugates. J Control Release. 2019;294:176–84.

    Article  CAS  PubMed  Google Scholar 

  92. Yan W, Wistuba II, Emmert-Buck MR, Erickson HS. Squamous cell carcinoma - similarities and differences among anatomical sites. Am J Cancer Res. 2011;1(3):275–300.

    PubMed  Google Scholar 

  93. Riechelmann H, Sauter A, Golze W, Hanft G, Schroen C, Hoermann K, et al. Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral Oncol. 2008;44(9):823–9.

    Article  CAS  PubMed  Google Scholar 

  94. Kasthuri RS, Taubman MB, Mackman N. Role of tissue factor in cancer. J Clin Oncol. 2009;27(29):4834–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. de Bono JS, Concin N, Hong DS, Thistlethwaite FC, Machiels JP, Arkenau HT, et al. Tisotumab vedotin in patients with advanced or metastatic solid tumours (InnovaTV 201): a first-in-human, multicentre, phase 1-2 trial. Lancet Oncol. 2019;20(3):383–93.

    Article  PubMed  Google Scholar 

  96. De SK. Tisotumab vedotin; first FDA approved antibody-drug conjugate for cervical cancer. Anticancer Agents Med Chem. 2022;22(16):2808–10.

    Article  PubMed  Google Scholar 

  97. Purcell JW, Tanlimco SG, Hickson J, Fox M, Sho M, Durkin L, et al. LRRC15 is a novel mesenchymal protein and stromal target for antibody-drug conjugates. Cancer Res. 2018;78(14):4059–72.

    Article  CAS  PubMed  Google Scholar 

  98. Kurokawa M, Nabeshima K, Akiyama Y, Maeda S, Nishida T, Nakayama F, et al. CD56: a useful marker for diagnosing Merkel cell carcinoma. J Dermatol Sci. 2003;31(3):219–24.

    Article  CAS  PubMed  Google Scholar 

  99. Ollier J, Kervarrec T, Samimi M, Benlalam H, Aumont P, Vivien R, et al. Merkel cell carcinoma and cellular cytotoxicity: sensitivity to cellular lysis and screening for potential target antigens suitable for antibody-dependent cellular cytotoxicity. Cancer Immunol Immunother. 2018;67(8):1209–19.

    Article  CAS  PubMed  Google Scholar 

  100. Shah MH, Lorigan P, O'Brien ME, Fossella FV, Moore KN, Bhatia S, et al. Phase I study of IMGN901, a CD56-targeting antibody-drug conjugate, in patients with CD56-positive solid tumors. Invest New Drugs. 2016;34(3):290–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Socinski MA, Kaye FJ, Spigel DR, Kudrik FJ, Ponce S, Ellis PM, et al. Phase 1/2 Study of the CD56-targeting antibody-drug conjugate lorvotuzumab mertansine (IMGN901) in combination with carboplatin/etoposide in small-cell lung cancer patients with extensive-stage disease. Clin Lung Cancer. 2017;18(1):68–76 e2.

    Article  CAS  PubMed  Google Scholar 

  102. Esnault C, Leblond V, Martin C, Desgranges A, Baltus CB, Aubrey N, et al. Adcitmer((R)) , a new CD56-targeting monomethyl auristatin E-conjugated antibody, is a potential therapeutic approach in Merkel cell carcinoma. Br J Dermatol. 2022;186(2):295–306.

    Article  CAS  PubMed  Google Scholar 

  103. Loganzo F, Tan X, Sung M, Jin G, Myers JS, Melamud E, et al. Tumor cells chronically treated with a trastuzumab-maytansinoid antibody-drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol Cancer Ther. 2015;14(4):952–63.

    Article  CAS  PubMed  Google Scholar 

  104. Starling JJ, Maciak RS, Hinson NA, Hoskins J, Laguzza BC, Gadski RA, et al. In vivo selection of human tumor cells resistant to monoclonal antibody-Vinca alkaloid immunoconjugates. Cancer Res. 1990;50(23):7634–40.

    CAS  PubMed  Google Scholar 

  105. Andor N, Graham TA, Jansen M, Xia LC, Aktipis CA, Petritsch C, et al. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat Med. 2016;22(1):105–13.

    Article  CAS  PubMed  Google Scholar 

  106. Grzywa TM, Paskal W, Wlodarski PK. Intratumor and intertumor heterogeneity in melanoma. Transl Oncol. 2017;10(6):956–75.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Harbst K, Lauss M, Cirenajwis H, Isaksson K, Rosengren F, Torngren T, et al. Multiregion whole-exome sequencing uncovers the genetic evolution and mutational heterogeneity of early-stage metastatic melanoma. Cancer Res. 2016;76(16):4765–74.

    Article  CAS  PubMed  Google Scholar 

  108. Gillies RJ, Verduzco D, Gatenby RA. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat Rev Cancer. 2012;12(7):487–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. LoRusso PM, Weiss D, Guardino E, Girish S, Sliwkowski MX. Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin Cancer Res. 2011;17(20):6437–47.

    Article  CAS  PubMed  Google Scholar 

  110. Parslow AC, Parakh S, Lee FT, Gan HK, Scott AM. Antibody-drug conjugates for cancer therapy. Biomedicines. 2016;4(3):14.

    Article  PubMed Central  Google Scholar 

  111. Sievers EL, Senter PD. Antibody-drug conjugates in cancer therapy. Annu Rev Med. 2013;64:15–29.

    Article  CAS  PubMed  Google Scholar 

  112. Loo TW, Clarke DM. Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. J Membr Biol. 2005;206(3):173–85.

    Article  CAS  PubMed  Google Scholar 

  113. Kovtun YV, Audette CA, Mayo MF, Jones GE, Doherty H, Maloney EK, et al. Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res. 2010;70(6):2528–37.

    Article  CAS  PubMed  Google Scholar 

  114. von Boehmer L, Mattle M, Bode P, Landshammer A, Schafer C, Nuber N, et al. NY-ESO-1-specific immunological pressure and escape in a patient with metastatic melanoma. Cancer Immun. 2013;13:12.

    Google Scholar 

  115. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. de Goeij BE, Lambert JM. New developments for antibody-drug conjugate-based therapeutic approaches. Curr Opin Immunol. 2016;40:14–23.

    Article  PubMed  Google Scholar 

  117. Donaghy H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs. 2016;8(4):659–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Singh AP, Sharma S, Shah DK. Quantitative characterization of in vitro bystander effect of antibody-drug conjugates. J Pharmacokinet Pharmacodyn. 2016;43(6):567–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Szijj PA, Bahou C, Chudasama V. Minireview: addressing the retro-Michael instability of maleimide bioconjugates. Drug Discov Today Technol. 2018;30:27–34.

    Article  PubMed  Google Scholar 

  120. Amani N, Dorkoosh FA, Mobedi H. ADCs, as novel revolutionary weapons for providing a step forward in targeted therapy of malignancies. Curr Drug Deliv. 2020;17(1):23–51.

    Article  CAS  PubMed  Google Scholar 

  121. Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008;26(8):925–32.

    Article  CAS  PubMed  Google Scholar 

  122. Strop P, Delaria K, Foletti D, Witt JM, Hasa-Moreno A, Poulsen K, et al. Site-specific conjugation improves therapeutic index of antibody drug conjugates with high drug loading. Nat Biotechnol. 2015;33(7):694–6.

    Article  CAS  PubMed  Google Scholar 

  123. Lhospice F, Bregeon D, Belmant C, Dennler P, Chiotellis A, Fischer E, et al. Site-specific conjugation of monomethyl auristatin E to anti-CD30 antibodies improves their pharmacokinetics and therapeutic index in rodent models. Mol Pharm. 2015;12(6):1863–71.

    Article  CAS  PubMed  Google Scholar 

  124. Desnoyers LR, Vasiljeva O, Richardson JH, Yang A, Menendez EE, Liang TW, et al. Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. Sci Transl Med. 2013;5(207):207ra144.

    Article  PubMed  Google Scholar 

  125. Lisi L, Lacal PM, Martire M, Navarra P, Graziani G. Clinical experience with CTLA-4 blockade for cancer immunotherapy: from the monospecific monoclonal antibody ipilimumab to probodies and bispecific molecules targeting the tumor microenvironment. Pharmacol Res. 2022;175:105997.

    Article  CAS  PubMed  Google Scholar 

  126. Autio KA, Boni V, Humphrey RW, Naing A. Probody therapeutics: an emerging class of therapies designed to enhance on-target effects with reduced off-tumor toxicity for use in immuno-oncology. Clin Cancer Res. 2020;26(5):984–9.

    Article  CAS  PubMed  Google Scholar 

  127. Chomet M, Schreurs M, Nguyen M, Howng B, Villanueva R, Krimm M, et al. The tumor targeting performance of anti-CD166 Probody drug conjugate CX-2009 and its parental derivatives as monitored by (89)Zr-immuno-PET in xenograft bearing mice. Theranostics. 2020;10(13):5815–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

RG receives funding from the SCRIPS Foundation. DBJ receives funding from the Susan and Luke Simons Directorship for Melanoma, the James C. Bradford Melanoma Fund, the Van Stephenson Melanoma Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas B. Johnson MD, MSCI.

Ethics declarations

Conflict of Interest

DBJ has served on advisory boards or as a consultant for the BMS, Catalyst Biopharma, Iovance, Jansen, Mallinckrodt, Merck, Mosaic ImmunoEngineering, Novartis, Oncosec, Pfizer, Targovax, and Teiko, has received research funding from the BMS and Incyte, and has patents pending for use of MHC-II as a biomarker for immune checkpoint inhibitor response, and abatacept as treatment for immune-related adverse events.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Skin Cancer

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodman, R., Johnson, D.B. Antibody-Drug Conjugates for Melanoma and Other Skin Malignancies. Curr. Treat. Options in Oncol. 23, 1428–1442 (2022). https://doi.org/10.1007/s11864-022-01018-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-022-01018-3

Keywords

Navigation