Skip to main content
Log in

The Role of Anti-PD-1/PD-L1 in the Treatment of Skin Cancer

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Skin cancers remain the most common group of cancers globally, and the incidence continues to rise. Although localized skin cancers tend to have excellent outcomes following surgical excisions, the less common cases that become surgically unresectable or metastatic have been associated with poor prognosis and suboptimal treatment responses to cytotoxic chemotherapy. Development of monoclonal antibodies to programmed cell death-1 receptor and its ligand (PD-1/PD-L1) have transformed the management of metastatic melanoma, squamous cell carcinoma, and Merkel cell carcinoma. These agents, as monotherapies, are associated with response rates of approximately 40–60%, many of which persist durably. Further efficacy is observed with combination immunotherapy in advanced melanoma. Early reports suggest similar activity in locally advanced or metastatic basal cell carcinoma. In this review, we describe common molecular features of skin cancers that may render them particularly susceptible to anti-PD-1/PD-L1 and detail results from key clinical trials of these agents across skin cancers. Overall, the superior response rates of skin cancer to anti-PD-1/PD-L1 compared with other solid tumor types are likely due, at least in part, to a high mutational burden and, in Merkel cell carcinoma, viral etiology. Although melanoma has been rigorously studied in the setting of anti-PD-1/PD-L1 treatment, more research is needed for the other skin cancer types to establish toxicity profiles, responses, and quality-of-life outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nowicki TS, Hu-Lieskovan S, Ribas A. Mechanisms of resistance to PD-1 and PD-L1 blockade. Cancer J. 2018;24(1):47–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yokota K, Uchi H, Uhara H, et al. Adjuvant therapy with nivolumab versus ipilimumab after complete resection of stage III/IV melanoma: Japanese subgroup analysis from the phase 3 CheckMate 238 study. J Dermatol. 2019;46(12):1197–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Haslam A, Prasad V. Estimation of the percentage of us patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open. 2019;2(5):e192535.

    PubMed  PubMed Central  Google Scholar 

  5. Reck M, Rodriguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.

    CAS  PubMed  Google Scholar 

  6. Chen JT, Kempton SJ, Rao VK. The economics of skin cancer: an analysis of medicare payment data. Plast Reconstr Surg Glob Open. 2016;4(9):e868.

    PubMed  PubMed Central  Google Scholar 

  7. Nghiem PT, Bhatia S, Lipson EJ, et al. PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma. N Engl J Med. 2016;374(26):2542–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Migden MR, Rischin D, Schmults CD, et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med. 2018;379(4):341–51.

    CAS  PubMed  Google Scholar 

  9. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-. N Engl J year survival with combined nivolumab and ipilimumab in advanced melanomaMed. 2019;381(16):1535–46.

    CAS  Google Scholar 

  10. Weber J, Mandala M, Del Vecchio M, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017;377(19):1824–35.

    CAS  PubMed  Google Scholar 

  11. Eggermont AMM, Blank CU, Mandala M, et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 2018;378(19):1789–801.

    CAS  PubMed  Google Scholar 

  12. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.

    PubMed  PubMed Central  Google Scholar 

  13. Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hodi FS, Chiarion-Sileni V, Gonzalez R, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018;19(11):1480–92.

    CAS  PubMed  Google Scholar 

  15. Tawbi HA, Forsyth PA, Algazi A, et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N Engl J Med. 2018;379(8):722–30.

    CAS  PubMed  Google Scholar 

  16. Long GV, Atkinson V, Lo S, et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study. Lancet Oncol. 2018;19(5):672–81.

    CAS  PubMed  Google Scholar 

  17. D’Angelo SP, Russell J, Lebbe C, et al. Efficacy and safety of first-line avelumab treatment in patients with stage IV metastatic Merkel cell carcinoma: a preplanned interim analysis of a clinical trial. JAMA Oncol. 2018;4(9):e180077.

    PubMed  PubMed Central  Google Scholar 

  18. Kaufman HL, Russell J, Hamid O, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016;17(10):1374–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chang ALS, Tran DC, Cannon JGD, et al. Pembrolizumab for advanced basal cell carcinoma: an investigator-initiated, proof-of-concept study. J Am Acad Dermatol. 2019;80(2):564–6.

    PubMed  Google Scholar 

  20. Paulson KG, Lahman MC, Chapuis AG, Brownell I. Immunotherapy for skin cancer. Int Immunol. 2019;31(7):465–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 2017;377(25):2500–1.

    PubMed  PubMed Central  Google Scholar 

  22. Mandal R, Samstein RM, Lee KW, et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science. 2019;364(6439):485–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Eroglu Z, Zaretsky JM, Hu-Lieskovan S, et al. High response rate to PD-1 blockade in desmoplastic melanomas. Nature. 2018;553(7688):347–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnson DB, Frampton GM, Rioth MJ, et al. Targeted next generation sequencing identifies markers of response to PD-1 blockade. Cancer Immunol Res. 2016;4(11):959–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.

    CAS  PubMed  Google Scholar 

  27. Guy GP Jr, Thomas CC, Thompson T, Watson M, Massetti GM, Richardson LC. Vital signs: melanoma incidence and mortality trends and projections—United States, 1982–2030. MMWR Morb Mortal Wkly Rep. 2015;64(21):591–6.

    PubMed  PubMed Central  Google Scholar 

  28. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Schadendorf D, Hodi FS, Robert C, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33(17):1889–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Schachter J, Ribas A, Long GV, et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet. 2017;390(10105):1853–62.

    CAS  PubMed  Google Scholar 

  31. Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.

    CAS  PubMed  Google Scholar 

  32. Johnson DB, Chandra S, Sosman JA. Adverse events associated with immune checkpoint inhibitors-reply. Jama. 2019;321(12):1219–20.

    PubMed  Google Scholar 

  33. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378(2):158–68.

    CAS  PubMed  Google Scholar 

  34. Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang DY, Salem JE, Cohen JV, et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 2018;4(12):1721–8.

    PubMed  PubMed Central  Google Scholar 

  36. Jansen YJL, Rozeman EA, Mason R, et al. Discontinuation of anti-PD-1 antibody therapy in the absence of disease progression or treatment limiting toxicity: clinical outcomes in advanced melanoma. Ann Oncol. 2019;30(7):1154–61.

    CAS  PubMed  Google Scholar 

  37. Hamid O, Robert C, Daud A, et al. Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann Oncol. 2019;30(4):582–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gauci ML, Lanoy E, Champiat S, et al. Long-term survival in patients responding to anti-PD-1/PD-L1 therapy and disease outcome upon treatment discontinuation. Clin Cancer Res. 2019;25(3):946–56.

    PubMed  Google Scholar 

  39. Eggermont AM, Chiarion-Sileni V, Grob JJ, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2015;16(5):522–30.

    CAS  PubMed  Google Scholar 

  40. Glitza Oliva IC, Schvartsman G, Tawbi H. Advances in the systemic treatment of melanoma brain metastases. Ann Oncol. 2018;29(7):1509–20.

    CAS  PubMed  Google Scholar 

  41. Davies MA, Liu P, McIntyre S, et al. Prognostic factors for survival in melanoma patients with brain metastases. Cancer. 2011;117(8):1687–96.

    PubMed  Google Scholar 

  42. Kluger HM, Chiang V, Mahajan A, et al. Long-term survival of patients with melanoma with active brain metastases treated with pembrolizumab on a phase II trial. J Clin Oncol. 2019;37(1):52–60.

    CAS  PubMed  Google Scholar 

  43. Long GV, Atkinson VG, Lo S, et al. Long-term outcomes from the randomized phase II study of nivolumab (nivo) or nivo + ipilimumab (ipi) in patients (pts) with melanoma brain metastases (mets): Anti-PD1 brain collaboration (ABC). Ann Oncol. 2019;30:v534.

    Google Scholar 

  44. Algazi AP, Tsai KK, Shoushtari AN, et al. Clinical outcomes in metastatic uveal melanoma treated with PD-1 and PD-L1 antibodies. Cancer. 2016;122(21):3344–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shoushtari AN, Munhoz RR, Kuk D, et al. The efficacy of anti-PD-1 agents in acral and mucosal melanoma. Cancer. 2016;122(21):3354–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sullivan RJ, Hamid O, Gonzalez R, et al. Atezolizumab plus cobimetinib and vemurafenib in BRAF-mutated melanoma patients. Nat Med. 2019;25(6):929–35.

    CAS  PubMed  Google Scholar 

  47. Que SKT, Zwald FO, Schmults CD. Cutaneous squamous cell carcinoma: incidence, risk factors, diagnosis, and staging. J Am Acad Dermatol. 2018;78(2):237–47.

    PubMed  Google Scholar 

  48. Rogers HW, Weinstock MA, Feldman SR, Coldiron BM. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012. JAMA Dermatol. 2015;151(10):1081–6.

    PubMed  Google Scholar 

  49. Khan K, Mykula R, Kerstein R, et al. A 5-year follow-up study of 633 cutaneous SCC excisions: rates of local recurrence and lymph node metastasis. J Plast Reconstr Aesthet Surg. 2018;71(8):1153–8.

    CAS  PubMed  Google Scholar 

  50. Nakamura K, Okuyama R, Saida T, Uhara H. Platinum and anthracycline therapy for advanced cutaneous squamous cell carcinoma. Int J Clin Oncol. 2013;18(3):506–9.

    CAS  PubMed  Google Scholar 

  51. Maubec E, Petrow P, Scheer-Senyarich I, et al. Phase II study of cetuximab as first-line single-drug therapy in patients with unresectable squamous cell carcinoma of the skin. J Clin Oncol. 2011;29(25):3419–26.

    CAS  PubMed  Google Scholar 

  52. Ahmed SR, Petersen E, Patel R, Migden MR. Cemiplimab-RWLC as first and only treatment for advanced cutaneous squamous cell carcinoma. Expert Rev Clin Pharmacol. 2019;12(10):947–51.

    CAS  PubMed  Google Scholar 

  53. Maubec E, Boubaya M, Petrow P, et al. Pembrolizumab as first line therapy in patients with unresectable squamous cell carcinoma of the skin: interim results of the phase 2 CARSKIN trial. J Clin Oncol. 2018;36(15_suppl):9534.

    Google Scholar 

  54. Borradori L, Sutton B, Shayesteh P, Daniels GA. Rescue therapy with anti-programmed cell death protein 1 inhibitors of advanced cutaneous squamous cell carcinoma and basosquamous carcinoma: preliminary experience in five cases. Br J Dermatol. 2016;175(6):1382–6.

    CAS  PubMed  Google Scholar 

  55. Tran DC, Colevas AD, Chang ALS. Follow-up on programmed cell death 1 inhibitor for cutaneous squamous cell carcinoma. JAMA Dermatol. 2017;153(1):92–4.

    PubMed  Google Scholar 

  56. Blum V, Müller B, Hofer S, et al. Nivolumab for recurrent cutaneous squamous cell carcinoma: three cases. Eur J Dermatol. 2018;28(1):78–81.

    PubMed  Google Scholar 

  57. Delaitre L, Martins-Hericher J, Truchot E, et al. Regression of cutaneous basal cell and squamous cell carcinoma under pembrolizumab. Ann Dermatol Venereol. 2019;147:279–284.

    PubMed  Google Scholar 

  58. van Baar MLM, Guminski AD, Ferguson PM, Martin LK. Pembrolizumab for cutaneous squamous cell carcinoma: report of a case of inoperable squamous cell carcinoma with complete response to pembrolizumab complicated by granulomatous inflammation. JAAD Case Rep. 2019;5(6):491–4.

    PubMed  PubMed Central  Google Scholar 

  59. Assam JH, Powell S, Spanos WC. Unresectable cutaneous squamous cell carcinoma of the forehead with MLH1 mutation showing dramatic response to programmed cell death protein 1 inhibitor therapy. Clin Skin Cancer. 2016;1(1):26–9.

    PubMed  PubMed Central  Google Scholar 

  60. Stevenson ML, Wang CQ, Abikhair M, et al. Expression of programmed cell death ligand in cutaneous squamous cell carcinoma and treatment of locally advanced disease with pembrolizumab. JAMA Dermatol. 2017;153(4):299–303.

    PubMed  Google Scholar 

  61. Fitzgerald TL, Dennis S, Kachare SD, Vohra NA, Wong JH, Zervos EE. Dramatic increase in the incidence and mortality from Merkel cell carcinoma in the United States. Am Surg. 2015;81(8):802–6.

    PubMed  Google Scholar 

  62. Hughes MP, Hardee ME, Cornelius LA, Hutchins LF, Becker JC, Gao L. Merkel cell carcinoma: epidemiology, target, and therapy. Curr Dermatol Rep. 2014;3:46–53.

    PubMed  PubMed Central  Google Scholar 

  63. Iyer JG, Blom A, Doumani R, et al. Response rates and durability of chemotherapy among 62 patients with metastatic Merkel cell carcinoma. Cancer Med. 2016;5(9):2294–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bhatia S, Storer BE, Iyer JG, et al. Adjuvant radiation therapy and chemotherapy in merkel cell carcinoma: survival analyses of 6908 cases from the national cancer data base. J Natl Cancer Inst. 2016;108(9).

  65. Villani A, Fabbrocini G, Costa C, Carmela Annunziata M, Scalvenzi M. Merkel cell carcinoma: therapeutic update and emerging therapies. Dermatol Ther (Heidelb). 2019;9(2):209–22.

    PubMed  PubMed Central  Google Scholar 

  66. Lipson EJ, Vincent JG, Loyo M, et al. PD-L1 expression in the Merkel cell carcinoma microenvironment: association with inflammation, Merkel cell polyomavirus and overall survival. Cancer Immunol Res. 2013;1(1):54–63.

    CAS  PubMed  Google Scholar 

  67. Afanasiev OK, Yelistratova L, Miller N, et al. Merkel polyomavirus-specific T cells fluctuate with merkel cell carcinoma burden and express therapeutically targetable PD-1 and Tim-3 exhaustion markers. Clin Cancer Res. 2013;19(19):5351–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Knepper TC, Montesion M, Russell JS, et al. The genomic landscape of Merkel cell carcinoma and clinicogenomic biomarkers of response to immune checkpoint inhibitor therapy. Clin Cancer Res. 2019;25(19):5961–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nghiem P, Bhatia S, Lipson EJ, et al. Durable tumor regression and overall survival in patients with advanced merkel cell carcinoma receiving pembrolizumab as first-line therapy. J Clin Oncol. 2019;37(9):693–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Topalian SL, Bhatia S, Hollebecque A, et al. Abstract CT074: Non-comparative, open-label, multiple cohort, phase 1/2 study to evaluate nivolumab (NIVO) in patients with virus-associated tumors (CheckMate 358): efficacy and safety in Merkel cell carcinoma (MCC). Cancer Res. 2017;77(13 Supplement):CT074.

    Google Scholar 

  71. Moshiri AS, Doumani R, Yelistratova L, et al. Polyomavirus-negative Merkel cell carcinoma: a more aggressive subtype based on analysis of 282 cases using multimodal tumor virus detection. J Investig Dermatol. 2017;137(4):819–27.

    CAS  PubMed  Google Scholar 

  72. Goldenberg G, Karagiannis T, Palmer JB, et al. Incidence and prevalence of basal cell carcinoma (BCC) and locally advanced BCC (LABCC) in a large commercially insured population in the United States: a retrospective cohort study. J Am Acad Dermatol. 2016;75(5):957–66.

    PubMed  Google Scholar 

  73. Nguyen-Nielsen M, Wang L, Pedersen L, et al. The incidence of metastatic basal cell carcinoma (mBCC) in Denmark, 1997–2010. Eur J Dermatol. 2015;25(5):463–8.

    CAS  PubMed  Google Scholar 

  74. Axelson M, Liu K, Jiang X, et al. US Food and Drug Administration approval: vismodegib for recurrent, locally advanced, or metastatic basal cell carcinoma. Clin Cancer Res. 2013;19(9):2289–93.

    CAS  PubMed  Google Scholar 

  75. Sekulic A, Migden MR, Oro AE, et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med. 2012;366(23):2171–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Apalla Z, Papageorgiou C, Lallas A, et al. Spotlight on vismodegib in the treatment of basal cell carcinoma: an evidence-based review of its place in therapy. Clin Cosmet Investig Dermatol. 2017;10:171–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lipson EJ, Lilo MT, Ogurtsova A, et al. Basal cell carcinoma: PD-L1/PD-1 checkpoint expression and tumor regression after PD-1 blockade. J Immunother Cancer. 2017;5:23.

    PubMed  PubMed Central  Google Scholar 

  78. Lewis KD, Fury MG, Stankevich E, et al. 1240TiPPhase II study of cemiplimab, a human monoclonal anti-PD-1, in patients with advanced basal cell carcinoma (BCC) who experienced progression of disease on, or were intolerant of prior hedgehog pathway inhibitor (HHI) therapy. Ann Oncol 2018;29(suppl_8).

  79. Stein JE, Brothers P, Applebaum K, et al. A phase 2 study of nivolumab (NIVO) alone or plus ipilimumab (IPI) for patients with locally advanced unresectable (laBCC) or metastatic basal cell carcinoma (mBCC). J Clin Oncol. 2019;37:TPS9595.

    Google Scholar 

  80. Chang ALS, Tran DC, Cannon JGD, et al. Pembrolizumab for advanced basal cell carcinoma: An investigator-initiated, proof-of-concept study. Journal of the American Academy of Dermatology. 2019;80(2):564–6.

    PubMed  Google Scholar 

  81. Fischer S, Hasan Ali O, Jochum W, Kluckert T, Flatz L, Siano M. Anti-PD-1 therapy leads to near-complete remission in a patient with metastatic basal cell carcinoma. Oncol Res Treat. 2018;41(6):391–4.

    CAS  PubMed  Google Scholar 

  82. ClinicalTrials.gov. Nivolumab and ipilimumab in treating patients with rare tumors. NCT02834013. National Library of Medicine (US). https://clinicaltrials.gov/ct2/show/NCT02834013.

  83. ClinicalTrials.gov. TAPUR: Testing the use of Food and Drug Administration (FDA) approved drugs that target a specific abnormality in a tumor gene in people with advanced stage cancer (TAPUR). NCT02693535. https://clinicaltrials.gov/ct2/show/NCT02693535.

  84. Shoushtari AN, Friedman CF, Navid-Azarbaijani P, et al. Measuring toxic effects and time to treatment failure for nivolumab plus ipilimumab in melanoma. JAMA Oncol. 2018;4(1):98–101.

    PubMed  Google Scholar 

  85. Johnson DB, Chandra S, Sosman JA. Immune checkpoint inhibitor toxicity in 2018. Jama. 2018;320(16):1702–3.

    PubMed  Google Scholar 

  86. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Attia P, Phan GQ, Maker AV, et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol. 2005;23(25):6043–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Downey SG, Klapper JA, Smith FO, et al. Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clin Cancer Res. 2007;13(22):6681–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Quach HT, Dewan AK, Davis EJ, et al. Association of anti-programmed cell death 1 cutaneous toxic effects with outcomes in patients with advanced melanoma. JAMA Oncol. 2019;5(6):906–8.

    PubMed  PubMed Central  Google Scholar 

  90. Ascierto PA, Del Vecchio M, Robert C, et al. Ipilimumab 10 mg/kg versus ipilimumab 3 mg/kg in patients with unresectable or metastatic melanoma: a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2017;18(5):611–22.

    CAS  PubMed  Google Scholar 

  91. Lebbe C, Meyer N, Mortier L, et al. Evaluation of two dosing regimens for nivolumab in combination with ipilimumab in patients with advanced melanoma: results from the phase IIIb/IV CheckMate 511 trial. J Clin Oncol. 2019;37(11):867–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lucas JA, Menke J, Rabacal WA, Schoen FJ, Sharpe AH, Kelley VR. Programmed death ligand 1 regulates a critical checkpoint for autoimmune myocarditis and pneumonitis in MRL mice. J Immunol. 2008;181(4):2513–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mahmood SS, Fradley MG, Cohen JV, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71(16):1755–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Schneider S, Potthast S, Komminoth P, Schwegler G, Bohm S. PD-1 checkpoint inhibitor associated autoimmune encephalitis. Case Rep Oncol. 2017;10(2):473–8.

    PubMed  PubMed Central  Google Scholar 

  95. Cappelli LC, Brahmer JR, Forde PM, et al. Clinical presentation of immune checkpoint inhibitor-induced inflammatory arthritis differs by immunotherapy regimen. Semin Arthritis Rheum. 2018;48(3):553–7.

    PubMed  PubMed Central  Google Scholar 

  96. Stamatouli AM, Quandt Z, Perdigoto AL, et al. Collateral damage: insulin-dependent diabetes induced with checkpoint inhibitors. Diabetes. 2018;67(8):1471–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Johnson DB, Manouchehri A, Haugh AM, et al. Neurologic toxicity associated with immune checkpoint inhibitors: a pharmacovigilance study. J Immunother Cancer. 2019;7(1):134.

    PubMed  PubMed Central  Google Scholar 

  98. Johnson DB, Taylor KB, Cohen JV, et al. Anti-PD-1-induced pneumonitis is associated with persistent imaging abnormalities in melanoma patients. Cancer Immunol Res. 2019:canimm.0717.2018.

  99. Robert C, Ribas A, Schachter J, et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 2019;20(9):1239–51.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Randall Patrinely Jr.

Ethics declarations

Funding

This work was funded by a National Comprehensive Cancer Network (NCCN) Young Investigators Award (DBJ), an American Cancer Society institutional research Grant (DBJ), and the National Institutes of Health, Grant numbers: K23 CA204726 (DBJ), NIH R01CA227481 (DBJ).

Conflict of interest

Douglas B. Johnson serves on advisory boards for Array Biopharma, BMS, Incyte, Jansen, Merck, and Novartis; receives research funding from BMS and Incyte; and receives travel support from Genentech. J. Randall Patrinely Jr and Anna K. Dewan have no conflicts of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patrinely, J.R., Dewan, A.K. & Johnson, D.B. The Role of Anti-PD-1/PD-L1 in the Treatment of Skin Cancer. BioDrugs 34, 495–503 (2020). https://doi.org/10.1007/s40259-020-00428-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-020-00428-9

Navigation