Advertisement

Generation of Linear and Parabolic Concentration Gradients by Using a Christmas Tree-Shaped Microfluidic Network

  • Qilong Shen
  • Qiongwei Zhou
  • Zhigang Lu
  • Nangang Zhang
Engineering Science
  • 32 Downloads

Abstract

This paper describes a simple method of generating concentration gradients with linear and parabolic profiles by using a Christmas tree-shaped microfluidic network. The microfluidic gradient generator consists of two parts: a Christmas tree-shaped network for gradient generation and a broad microchannel for detection. A two-dimensional model was built to analyze the flow field and the mass transfer in the microfluidic network. The simulating results show that a series of linear and parabolic gradient profiles were generated via adjusting relative flow rate ratios of the two source solutions (RL2 ≥0.995 and RP2 ≥0.999), which could match well with the experimental results (RL2 ≥0.987 and RP2 ≥0.996). The proposed method is promising for the generation of linear and parabolic concentration gradient profiles, with the potential in chemical and biological applications such as combinatorial chemistry synthesis, stem cell differentiation or cytotoxicity assays.

Key words

tree-shaped network concentration gradient linear profile parabolic profile 

CLC number

O 351 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Dekker L, Segal A. Perspectives: signal transduction. Signals to move cells[J]. Science, 2000, 287(5455): 982–985.CrossRefPubMedGoogle Scholar
  2. [2]
    Parent C A, Devreotes P N. A cell’s sense of direction[J]. Science, 1999, 284(5415): 765–770.CrossRefPubMedGoogle Scholar
  3. [3]
    Weiner O D, Servant G, Welch M D, et al. Spatial control of actin polymerization during neutrophil chemotaxis[J]. Nature Cell Biology, 1999, 1(2): 75–81.CrossRefPubMedPubMedCentralGoogle Scholar
  4. [4]
    Walker G M, Sai J, Richmond A, et al. Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator[J]. Lab on a Chip, 2005, 5(6): 611–618.CrossRefPubMedPubMedCentralGoogle Scholar
  5. [5]
    Cheng B, Wang S, Chen Y, et al. A combined negative and positive enrichment assay for cancer cells isolation and purification[ J]. Technology in Cancer Research & Treatment, 2016, 15(1): 69–76.CrossRefGoogle Scholar
  6. [6]
    Poulsen C R, Culbertson C T, Jacobson S C, et al. Static and dynamic acute cytotoxicity assays on microfluidic devices[J]. Analytical Chemistry, 2005, 77(2): 667–672.CrossRefPubMedGoogle Scholar
  7. [7]
    Bang H, Lim S, Lee Y, et al. Serial dilution microchip for cytotoxicity test[J]. Journal of Micromechanics & Microengineering, 2004, 14(8): 1165–1170.CrossRefGoogle Scholar
  8. [8]
    Walker G M, Monteiro-Riviere N, Rouse J, et al. A linear dilution microfluidic device for cytotoxicity assays[J]. Lab on a Chip, 2007, 7(2): 226–232.CrossRefPubMedGoogle Scholar
  9. [9]
    Ye N, Qin J, Shi W, et al. Cell-based high content screening using an integrated microfluidic device[J]. Lab on a Chip, 2007, 7(12): 1696–1704.CrossRefPubMedGoogle Scholar
  10. [10]
    Puttaraksa N, Whitlow H J, Napari M, et al. Development of a microfluidic design for an automatic lab-on-chip operation[ J]. Microfluid Nanofluid, 2016, 20(10): 142–152.CrossRefGoogle Scholar
  11. [11]
    Boyden S. Chemotactic effect of antibody and antigen[J]. Journal of Experimental Medicine, 1962, 115: 453–466.CrossRefPubMedPubMedCentralGoogle Scholar
  12. [12]
    Zicha D, Dunn G A, Brown A F. A new direct-viewing chemotaxis chamber[J]. Journal of Cell Science, 1991, 99(4): 769–775.PubMedGoogle Scholar
  13. [13]
    Song H J, Poo M M. Signal transduction underlying growth cone guidance by diffusible factors[J]. Current Opinion Neurobiology, 1999, 9(3): 355–363.CrossRefGoogle Scholar
  14. [14]
    Mao H, Cremer P S, Manson M D. A sensitive, versatile microfluidic assay for bacterial chemotaxis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(9): 5449–5454.CrossRefPubMedPubMedCentralGoogle Scholar
  15. [15]
    Walker G M, Ozers M S, Beebe D J. Cell infection within a microfluidic device using virus gradients[J]. Sensors & Actuators B Chemical, 2004, 98(2): 347–355.CrossRefGoogle Scholar
  16. [16]
    Ketterer S, Hovermann D, Guebeli R J, et al. Transcription factor sensor system for parallel quantification of metabolites on-chip [J]. Analytical Chemistry, 2014, 86(24): 12152–12158.CrossRefPubMedGoogle Scholar
  17. [17]
    Wang W, Cui H, Zhang P, et al. Efficient capture of cancer cells by their replicated surfaces reveals multiscale topographic interactions coupled with molecular recognition[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10537–10543.CrossRefGoogle Scholar
  18. [18]
    Zhou H, Yao S. A facile on-demand droplet microfluidic system for lab-on-a-chip applications[J]. Microfluid Nanofluid, 2013, 16(4): 667–675.CrossRefGoogle Scholar
  19. [19]
    Jeon N L, Dertinger S K W, Chiu D T, et al. Generation of solution and surface gradients using microfluidic systems[J]. Langmuir, 2000, 16(22): 8311–8316.CrossRefGoogle Scholar
  20. [20]
    Dertinger S K W, Chiu D T, Jeon N L, et al. Generation of gradients having complex shapes using microfluidic networks[ J]. Analytical Chemistry, 2001, 73(6): 1240–1246.CrossRefGoogle Scholar
  21. [21]
    Irimia D, Geba D A, Toner M. Universal microfluidic gradient generator [J]. Analytical Chemistry, 2006, 78(10): 3472–3477.CrossRefPubMedPubMedCentralGoogle Scholar
  22. [22]
    Yamada M, Hirano T, Yasuda M, et al. A microfluidic flow distributor generating stepwise concentrations for highthroughput biochemical processing [J]. Lab on a Chip, 2006, 6(2): 179–184.CrossRefPubMedGoogle Scholar
  23. [23]
    Lee K, Kim C, Ahn B, et al. Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators [J]. Lab on a Chip, 2009, 9(5): 709–717.CrossRefPubMedGoogle Scholar
  24. [24]
    Kim C, Lee K, Kim J H, et al. A serial dilution microfluidic device using a ladder network generating logarithmic or linear concentrations [J]. Lab on a Chip, 2008, 8(3): 473–479.CrossRefPubMedGoogle Scholar
  25. [25]
    Liu W, Lin J M. Online monitoring of Lactate Efflux by multi-channel microfluidic chip-mass spectrometry for rapid Drug Evaluation[J]. ACS Sensors, 2016, 1(4):344–347.CrossRefGoogle Scholar
  26. [26]
    Gleichmann N, Malsch D, Horbert P, et al. Toward microfluidic design automation: A new system simulation toolkit for the in silico evaluation of droplet-based lab-on-a-chip systems[J]. Microfluid Nanofluid, 2014, 18(5): 1095–1105.Google Scholar
  27. [27]
    Li Y, Li L, Liu Z, et al. A microfluidic chip of multiple-channel array with various oxygen tensions for drug screening [J]. Microfluid Nanofluid, 2016, 20(7): 1–9.CrossRefGoogle Scholar
  28. [28]
    Duffy D C, McDonald J C, Schueller O J A, et al. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) [J]. Analytical Chemistry, 1998, 70(23): 4974–4984.CrossRefPubMedGoogle Scholar
  29. [29]
    Glasgow I, Aubry N. Run with the ball: Sony Entertainment Television changed the way cricket is sold in India, and went on to reinvent the relationship between branding, product placement and programming [J]. Lab on a Chip, 2003, 3(3): 114–120.CrossRefPubMedGoogle Scholar

Copyright information

© Wuhan University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qilong Shen
    • 1
  • Qiongwei Zhou
    • 1
  • Zhigang Lu
    • 1
  • Nangang Zhang
    • 1
  1. 1.School of Electrical and Electronic EngineeringWuhan Textile UniversityWuhan, HubeiChina

Personalised recommendations