Skip to main content
Log in

Development of a microfluidic design for an automatic lab-on-chip operation

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Simple and easy to use are the keys for developing lab-on-chip technology. Here, a new microfluidic circuit has been designed for an automatic lab-on-chip operation (ALOCO) device. This chip used capillary forces for controlled and precise manipulation of liquids, which were loaded in sequence from different flowing directions towards the analysis area. Using the ALOCO design, a non-expert user is able to operate the chip by pipetting liquids into suitable inlet reservoirs. To test this design, microfluidic devices were fabricated using the programmable proximity aperture lithography technique. The operation of the ALOCO chip was characterized from the flow of red-, blue- and un-dyed deionized water. Experimental result indicated that red water, which filled first the analysis area, was substituted entirely with blue water. Controlled sequential flows of these water in the ALOCO device are demonstrated in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42

    Google Scholar 

  • Ansari K, van Kan JA, Bettiol AA, Watt F (2006) Stamps for nanoimprint lithography fabricated by proton beam writing and nickel electroplating. J Micromech Microeng 16:1967–1974

    Article  Google Scholar 

  • Becker H, Heim U (2000) Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens Actuators 83:130–135

    Article  Google Scholar 

  • Bousse L, Cohen C, Nikiforov T, Chow A, Kopf-Sill AR, Dubrow R, Wallace Parce J (2000) Electrokinetically controlled microfluidic analysis systems. Annu Rev Biophys Biomol Struct 29:155–181

    Article  Google Scholar 

  • Brun S, Savu V, Schintke S, Guibert E, Keppner H, Brugger J, Whitlow HJ (2013) Application of stencil masks for ion beam lithographic patterning. Nucl Instr Meth B 306:292–295

    Article  Google Scholar 

  • Cao L, Price TP, Weiss M, Gao D (2008) Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films. Langmuir 24:1640–1643

    Article  Google Scholar 

  • Chang FM, Sheng YJ, Cheng SL, Tsao HK (2008) Tiny bubble removal by gas flow through porous superhydrophobic surfaces: Ostwald ripening. Appl Phys Lett 92:264102

    Article  Google Scholar 

  • Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab Chip 7:41–57

    Article  Google Scholar 

  • Cho YK, Lee JG, Park JM, Lee BS, Lee Y, Ko C (2007) One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip 7:565–573

    Article  Google Scholar 

  • Delamarche E, Bernard A, Schmid H, Bietsch A, Michel B, Biebuyck H (1998) Microfluidic networks for chemical patterning of substrates: design and application to bioassays. J Am Chem Soc 120:500–508

    Article  Google Scholar 

  • Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discovery 5:210–218

    Article  Google Scholar 

  • Feng Y, Zhou Z, Ye X, Xiong J (2003) Passive valves based on hydrophobic microfluidics. Sens Actuators A 2003:138–143

    Article  Google Scholar 

  • Gorelick S, Puttaraksa N, Sajavaara T, Laitinen M, Singkarat S, Whitlow HJ (2008) Fabrication of microfluidic devices using MeV ion beam Programmable Proximity Aperture Lithography (PPAL). Nucl Instr Meth B 266:2461–2465

    Article  Google Scholar 

  • Irimia D (2008) Capillary Force Valves. Encyclopedia of Microfluidic and Nanofluidics pp 192–196

  • Jasper JJ (1972) The surface tension of pure liquid compounds. J Phys Chem Ref Data 1(4):841–1009

    Article  Google Scholar 

  • Jiang H, Weng X, Li D (2011) Microfluidic whole-blood immunoassays. Microfluid Nanofluid 10:941–964

    Article  Google Scholar 

  • Jin S, Dai M, Fei He, Wang Y, Ye BC, Nugen SR (2012) Development and characterization of a capillary-flow microfluidic device for nucleic acid detection. Microsyst Technol 18:731–737

    Article  Google Scholar 

  • Juncker D, Schmid H, Drechsler U, Wolf H, Wolf M, Michel B, Rooij ND, Delamarche E (2002) Autonomous microfluidic capillary system. Anal Chem 74:6139–6144

    Article  Google Scholar 

  • Khoshmanesh K, Almansouri A, Albloushi H, Yi P, Soffe R, Kalantar-Zadeh K (2015) A multi-functional bubble-based microfluidic system. Sci Rep 5(9942):1–8

    Google Scholar 

  • Leu TS, Chang PY (2004) Pressure barrier of capillary stop valves in micro sample separators. Sens Actuators A 115:508–515

    Article  Google Scholar 

  • Liu HB, Gong HQ, Ramalingam N, Jiang Y, Dai CC, Km Hui (2007) Micro air bubble formation and its control during polymerase chain reaction (PCR) in polydimethylsiloxane (PDMS) microreactors. J Micromech Microeng 17:2055

    Article  Google Scholar 

  • Ma Y, Cao X, Feng X, Ma Y, Zou H (2007) Fabrication of super-hydrophobic film from PMMA with intrinsic water contact angle below 90°. Polymer 48:7455–7460

    Article  Google Scholar 

  • Mouradian S (2001) Lab-on-a-chip: applications in proteomics. Curr Opin Chem Biol 6:51–56

    Article  Google Scholar 

  • Novo P, Volpetti F, Chu V, Conde JP (2013) Control of sequential fluid delivery in a fully autonomous capillary microfluidic device. Lab Chip 13:641–645

    Article  Google Scholar 

  • Puttaraksa N, Gorelick S, Sajavaara T, Laitinen M, Singkarat S, Whitlow HJ (2008) Programmable proximity aperture lithography with MeV ion beams. J Vac Sci Technol B 26(5):1732–1739

    Article  Google Scholar 

  • Puttaraksa N, Unai S, Rhodes MW, Singkarat K, Whitlow HJ, Singkarat S (2012) Fabrication of a negative PMMA master mold for soft-lithography by MeV ion beam lithography. Nucl Instr Meth B 272:149–152

    Article  Google Scholar 

  • Puttaraksa N, Napari M, Meriläinen L, Whitlow HJ, Sajavaara T, Gilbert L (2013) High speed microfluidic prototyping by programmable proximity aperture MeV ion beam lithography. Nucl Instr Meth B 306:302–306

    Article  Google Scholar 

  • Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189

    Article  Google Scholar 

  • Sainiemi L, Nissilä T, Jokinen V, Sikanen T, Kotiaho T, Kostiainen R, Ketola RA, Franssila S (2008) Fabrication and fluidic characterization of silicon micropillar array electrospray ionization chip. Sens Actuators B 132:380–387

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026

    Article  Google Scholar 

  • Soper SA, Henry AC, Vaidya B, Galloway M, Wabuyele M, McCarley RL (2002) Surface modification of polymer-based microfluidic devices. Anal Chim Acta 470:87–99

    Article  Google Scholar 

  • Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4:310–315

    Article  Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  MATH  Google Scholar 

  • Sung JH, Shuler ML (2009) Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap. Biomed Microdevices 11:731–738

    Article  Google Scholar 

  • Weigl BH, Bardell RL, Cabrera CR (2003) Lab-on-a-chip for drug development. Adv Drug Deliv Rev 55:349–377

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Whitlow HJ, Wang LP, Gilbert L (2009) Transport of water and particles in microfluidics devices lithographically fabricated using proton beam writing (PBW). Adv Mater Res 74:129–132

    Article  Google Scholar 

  • Xu Y, Lv Y, Wang L, Xing W, Cheng J (2012) A microfluidic device with passive air-bubble valves for real-time measurement of dose-dependent drug cytotoxicity through impedance sensing. Biosens Bioelectron 32:300–304

    Article  Google Scholar 

  • Yeo LY, Friend JR (2009) Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics 3:012002-1–012002-23

    Google Scholar 

  • Zimmermann M, Schmid H, Hunziker P, Delamarche E (2007) Capillary pumps for autonomous capillary systems. Lab Chip 7:119–125

    Article  Google Scholar 

  • Zimmermann M, Hunziker P, Delamarche E (2008) Valves for autonomous capillary systems. Microfluid Nanofluid 5:395–402

    Article  Google Scholar 

  • Zimmermann M, Hunziker P, Delamarche E (2009) Autonomous capillary system for one-step immunoassays. Biomed Microdevices 11:1–8

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by European union (EU) Grant Agreement Number 262411. The funding source had no involvement or role in the development of this article. Dr. Liping Wang is gratefully acknowledged for conceptualization of the microfluidic design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitipon Puttaraksa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puttaraksa, N., Whitlow, H.J., Napari, M. et al. Development of a microfluidic design for an automatic lab-on-chip operation. Microfluid Nanofluid 20, 142 (2016). https://doi.org/10.1007/s10404-016-1808-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1808-0

Keywords

Navigation