Skip to main content
Log in

Controlled synthesis of SnO2 with hierarchical Micro/Nano structure

  • Material Science
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

Preparing SnO2 with hierarchical micro/nano structures by hydrothermal, coordination, templating and electrochemical deposition methods and their mechanisms are investigated. The result shows that the echinus-like SnO2 prepared by Method 1 is a typical Ostwald mechanism that develops from internally to externally. The cabbage-like SnO2 by Method 2 is produced with oxalic acid as complexing agent to set-up precursor of SnO2, and then precursors are bocked around the body that is around the body being bocked. The nest-like SnO2 by Method 3 is controlled by citric acid as coordinator for the nucleation as well as the grow rate and setup process. Spongy-like SnO2 by Method 4 is produced using PST as template, PST is be infiltered into SnO2 precursor by gravity and capillary and treated thermally to form a multiporous structure. The petal-like SnO2 by Method 5 is formed with crystal deposition emergence due to oxidation-reduction reactions of two electrodes in an electric field. XRD analyses shows that the five results are all pure phase SnO2. It provides basic data for SnO2 industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen J, Zhu Y, Yang X, et al. One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light [J]. New Journal of Chemistry, 2012, 36(1): 97–101.

    Article  CAS  Google Scholar 

  2. Hao X Z, Zhai Y C, Jiang K L, et al. Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: A novel binder-free and high-capacity anode material for lithium-ion batteries [J]. Advanced Materials, 2009, 21(22): 2299–2304.

    Article  Google Scholar 

  3. Teng S X, Wang J F, Chen H C, et al. Grain-size-effect induced by doping CeO2 in SnO2 varistors [J]. Electronic Components & Materials, 2003, 22(11): 31–34 (Ch).

    CAS  Google Scholar 

  4. Hu S M. Complex impedance analysis for the relationship of calcining process and sensing properties of SnO2-LiZnVO4 humidity ceramic [J]. Chinese Journal of Sensors and Actuators, 2007, 20(4): 767–769.

    CAS  Google Scholar 

  5. Lang F. Preparation and catalytic chemistry research of SnO 2 -based catalysts [M]. Jiangxi: Library of Nanchang University, 2012 (Ch).

    Google Scholar 

  6. Wang H X, Yan Y, Mohammed Y S, et al. First-principle study of magnetism in Co-doped SnO2 [J]. Journal of Magnetism and Magnetic Materials, 2009, 321(5): 337–342.

    Article  CAS  Google Scholar 

  7. Coey J M D, Douvalis A P, Fitzgerald C B, et al. Ferromagnetism in Fe-doped SnO2 thin films [J]. Applied Physics Letters, 2004, 84(8): 1332–1334.

    Article  CAS  Google Scholar 

  8. Zhao T P, Gao D S, Li Z H, et al. Macroporous SnO2 microparticles as lithium ion battery anode [J]. Acta Chimica Sinica, 2009, 67(1): 1–5 (Ch).

    CAS  Google Scholar 

  9. Du G D, Zhong C, Zhang P, et al. Tin dioxide/carbon nanotube composites with high uniform SnO2 loading as anode materials for lithium ion batteries [J]. Electrochimica Acta, 2010, 55(7): 2582–2586.

    Article  CAS  Google Scholar 

  10. Wang Y L, Yu J, Li R, et al. Morphology-controlled synthesis of SnO2 as lithium ion batteries anode materials [J]. Progress in Chemistry, 2012, 24(11): 2132–2142 (Ch).

    Google Scholar 

  11. Ayoub K, Van Hullebusch E D, Cassir M, et al. Application of advanced oxidation processes for TNT removal: A review [J]. Journal of Hazardous Materials, 2010, 178(1–3): 10–28.

    Article  CAS  PubMed  Google Scholar 

  12. Cossu R, Polcaro A M, Lavagnolo M C, et al. Electrochemical treatment of landfill leachate: Oxidation at Ti/PbO2 and Ti/SnO2 anodes [J]. Environmental Science & Technology, 1998, 32(22): 3570–3573.

    Article  CAS  Google Scholar 

  13. Liu Y J, Jiang Q P, Li Y H, et al. The microwave-assisted synthesis and gas sensing properties for ethanol of SnO2 nanomaterials [C]// The 2nd International Conference on Materials Science and Manufacturing (ICMSM2013). Switzerland: Trans Tech Publications Ltd, 2013, 721: 237–240.

    Google Scholar 

  14. Jiang H Y, Dai H X, Xia Y S, et al. Synthesis and characterization of wormhole-like mesoporous SnO2 with high surface area [J]. Chinese Journal of Catalysis, 2010, 31(3): 295–301.

    Article  CAS  Google Scholar 

  15. Wang C A, Qiu J S, Liang C H. Synthesis of carbon nanotubes-supported Pd/SnO2 for the hydrogenation of ortho-chloronitrobenzene [J]. Chinese Journal of Catalysis, 2009, 30(3): 259–264.

    Article  Google Scholar 

  16. Senthilkumar V, Vickraman P, Jayachandran M, et al. Synthesis and characterization of SnO2 nanopowder prepared by precipitation method [J]. Journal of Dispersion Science and Technology, 2010, 31(9): 1178–1181.

    Article  CAS  Google Scholar 

  17. Gondal M A, Drmosh Q A, Saleh T A. Preparation and characterization of SnO2 nanoparticles using high power pulsed laser [J]. Applied Surface Science, 2010, 256(23): 7067–7070.

    Article  CAS  Google Scholar 

  18. Wang A R, Xiao H. Controllable preparation of SnO2 nanoplates and nanoparticles via hydrothermal oxidation of SnS2 nanoplates [J]. Materials Letters, 2009, 63(13–14): 1221–1223.

    Article  CAS  Google Scholar 

  19. Acarbas O, Suvaci E, Dogan A. Preparation of nanosized tin oxide (SnO2) powder by homogeneous precipitation [J]. Ceramics International, 2007, 33(4): 537–542.

    Article  CAS  Google Scholar 

  20. Li H, Xu J Q, Zhu Y H, et al. Enhanced gas sensing by assembling Pd nanoparticles onto the surface of SnO2 nanowires [J]. Talanta, 2010, 82(2): 458–463.

    Article  CAS  PubMed  Google Scholar 

  21. Guo J, Zhang J, Ju D X, et al. Three-dimensional SnO2 microstructures assembled by porous nanosheets and their superior performance for gas sensing [J]. Powder Technology, 2013, 250: 40–45.

    Article  CAS  Google Scholar 

  22. Li Y G, Qiao L, Wang L L, et al. Synthesis of self-assembled 3D hollow microslpheres of SnO2 with an enhanced gas sensing performance [J]. Applied Surface Science, 2013, 285P: 130–135.

    Article  Google Scholar 

  23. Wang L L, Lou Z, Zhang T, et al. Facile synthesis of hierarchical SnO2 semiconductor microspheres for gas sensor application [J]. Sensors and Actuators B: Chemical, 2011, 155: 285–289.

    Article  CAS  Google Scholar 

  24. Chen H, Wang Q W, Kou C L, et al. One-pot synthesis and improved sensing properties of hierarchical flowerlike SnO2 assembled from sheet and ultra-thin rod subunits [J]. Sensors and Actuators B: Chemical, 2014, 194: 447–453.

    Article  CAS  Google Scholar 

  25. Xu K, Zeng D W, Tian S Q, et al. Hierarchical porous SnO2 micro-rods topologically transferred from tin oxalate for fast response sensors to trace formaldehyde [J]. Sensors and Actuators B: Chemical, 2014, 190: 585–592.

    Article  CAS  Google Scholar 

  26. Sun P, Mei X D, Cai Y X, et al. Synthesis and gas sensing properties of hierarchical SnO2 nanostructures [J]. Sensors and Actuators B: Chemical, 2013, 187: 301–307.

    Article  CAS  Google Scholar 

  27. Zai J T. Tin sulfide and oxide hierarchical micro-/nanostructures and their composites: Synthesis and properties [D]. Shanghai: Library of Shanghai Jiao Tong University, 2012 (Ch).

    Google Scholar 

  28. Hiroaki U, Hiroaki I, Tin oxide meshes consisting of nanoribbons prepared through an intermediate phase in an aqueous solution [J]. Crystal Growth & Design, 2007, 7(5): 841–843.

    Article  Google Scholar 

  29. Han G L, Song Y Z, Liu G H, et al. Preparation and characterization of SnO2 nanopowders for gas sensor application by hydrothermal and sol-gel methods [J]. Transactions of Materials and Heat Treatment, 2012, 33(4): 6–11 (Ch).

    Google Scholar 

  30. Hua L, Guo X P, Yang J K. Effects of Bi doping on electrochemical corrosion and dendrite growth suppression of lead-free Sn-3.0Ag-0.5Cu solder [J]. The Chinese Journal of Nonferrous Metals, 2012, 22(1): 150–157 (Ch).

    CAS  Google Scholar 

  31. Man L Y. Microwave-assisted solvothermal synthesis and gas sensitivities of nanostructured SnO 2 [M]. Shandong: Library of University of Jinan, 2012 (Ch).

    Google Scholar 

  32. Lou X W, Archer L A, Yang Z. Hollow micro-/nanostructures: Synthesis and applications [J]. Advanced Materials, 2008, 20(21): 3987–4019.

    Article  CAS  Google Scholar 

  33. Lou X W, Wang Y, Yuan C, et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity [J]. Advanced Materials, 2006, 18(17): 2325–2329.

    Article  CAS  Google Scholar 

  34. Yang H G, Zeng H C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening [J]. Journal of Physical Chemistry B, 2004, 108(11): 3492–3495.

    Article  CAS  Google Scholar 

  35. Cai W Q, Yu J G, Gu S H, et al. Facile hydrothermal synthesis of hierarchical boehmite: Sulfate-mediated transformation from nanoflakes to hollow microspheres [J]. Crystal Growth & Design, 2010, 10(9): 3977–3982.

    Article  CAS  Google Scholar 

  36. Yang H G, Qiao S Z, Sun C H, et al. Solvothermal synthesis and photoreactivity of anatase TiO(2) nanosheets with dominant {001} facets [J]. Journal of the American Chemical Society, 2009, 131(11): 4078–4083.

    Article  CAS  PubMed  Google Scholar 

  37. Liu M Y, Zhao J H, Zou M Q, et al. Controllable fabrication of SnO2 nanomaterials with three kinds of morphologies and their application as cataluminescence sensor [J]. Chemical Journal of Chinese Universities, 2011, 32(5): 1112–1117 (Ch).

    CAS  Google Scholar 

  38. Wu J, Duan F, Zheng Y, et al. Synthesis of Bi2WO6 nanoplate-builthierarchical nest-like structures with visible-light-induced photocatalytic activity [J]. The Journal of Physical Chemistry C, 2007, 111: 12866–12871.

    Article  CAS  Google Scholar 

  39. Chen G Y, Dneg B, Cai G B, et al. The fractal splitting growth of Sb2S3 and Sb2Se3 hierarchical nanostructures [J]. The Journal of Physical Chemistry C, 2008, 112: 672–679.

    Article  CAS  Google Scholar 

  40. Zhang G Q, Lu X L, Wang W, et al. Facile synthesis of a hierarchical PbTe flower-like nanostructure and its shape evolution process guided by a kinetically controlled regime [J]. Chemistry of Materials, 2007, 19: 5207–5209.

    Article  CAS  Google Scholar 

  41. Zhang T R, Dong W J, Keeter-Brewer M, et al. Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites [J]. Journal of the American Chemical Society, 2006, 128: 10960–10968.

    Article  CAS  PubMed  Google Scholar 

  42. Xu J S, Xue D F, Zhu Y C. Room temperature synthesis of curved ammonium copper molybdate nanoflake and its hierarchical architecture [J]. The Journal of Physical Chemistry B, 2006, 110(35): 17400–17405.

    Article  CAS  PubMed  Google Scholar 

  43. Uchiyama H, Ohgi H, Imai H. Selective preparation of SnO2 and SnO crystals with controlled morphologies in an aqueous solution system [J]. Crystal Growth & Design, 2006, 6(9): 2186–2190.

    Article  CAS  Google Scholar 

  44. Liu W. Preparation and representation of SnO 2 nano-materials by hydrothermal method [M]. Gansu: Library of Lanzhou University of Technology, 2009 (Ch).

    Google Scholar 

  45. Yang W D, Chang Y W, Huang S H. Influence of molar ratio of citric acid to metal ions on preparation of La0.67Sr0.33MnO3 materials via polymerizable complex process [J]. Journal of the European Ceramic Society, 2005, 25: 3611–3618.

    Article  CAS  Google Scholar 

  46. Wu Z C. Synthesis of inorganic hierarchical and hollow micro-/nanostructures by coordination chemistry principle and their properties [D]. Hefei: Library of University of Science and Technology of China, 2008 (Ch).

    Google Scholar 

  47. Guan G Q, Katsuki K, Karuka O, et al. Fabrication and structural analysis of three-dimensionally well-ordered arrangements of silicon oxycarbide microparticles [J]. Chemical Engineering Journal, 2008, 135: 232–237.

    Article  CAS  Google Scholar 

  48. Hu H, Xiao W J, ShangGuan W F. Preparation and properties of foam metal and its application in catalysis [J]. Industrial Catalysis, 2006, 14(10): 55–58.

    CAS  Google Scholar 

  49. Siruaruphan A, Goodwin J G, Metal foam supported Pt catalysts for the selective oxidation of CO in hydrogen [J]. Applied Catalysis A: General, 2005, 281: 1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Hua.

Additional information

Foundation item: Supported by fund of the Excellent Science & Technology Innovate Team Program for Young and Middle-aged Talents in University of Hubei Province (T201225), Hubei Provincial Key Laboratory of Plant Anti-Cancer Active Substance Purification and Application, The Second Excellent Teacher Team of Hubei University of Education (2012K203)

Biography: HUA Li, female, Post doctoral, Associate professor, research direction: new nanometer functional materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, L., Fang, Z., Li, M. et al. Controlled synthesis of SnO2 with hierarchical Micro/Nano structure. Wuhan Univ. J. Nat. Sci. 19, 93–105 (2014). https://doi.org/10.1007/s11859-014-0984-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-014-0984-6

Key words

CLC number

Navigation