ZDM

, Volume 51, Issue 5, pp 825–834

# Evidence, proofs, and derivations

• Andrew Aberdein
Original Article

## Abstract

The traditional view of evidence in mathematics is that evidence is just proof and proof is just derivation. There are good reasons for thinking that this view should be rejected: it misrepresents both historical and current mathematical practice. Nonetheless, evidence, proof, and derivation are closely intertwined. This paper seeks to tease these concepts apart. It emphasizes the role of argumentation as a context shared by evidence, proofs, and derivations. The utility of argumentation theory, in general, and argumentation schemes, in particular, as a methodology for the study of mathematical practice is thereby demonstrated. Argumentation schemes represent an almost untapped resource for mathematics education. Notably, they provide a consistent treatment of rigorous and non-rigorous argumentation, thereby working to exhibit the continuity of reasoning in mathematics with reasoning in other areas. Moreover, since argumentation schemes are a comparatively mature methodology, there is a substantial body of existing work to draw upon, including some increasingly sophisticated software tools. Such tools have significant potential for the analysis and evaluation of mathematical argumentation. The first four sections of the paper address the relationships of evidence to proof, proof to derivation, argument to proof, and argument to evidence, respectively. The final section directly addresses some of the educational implications of an argumentation scheme account of mathematical reasoning.

## Keywords

Argument Argumentation schemes Derivation Evidence Proof

## Notes

### Acknowledgements

I presented an earlier version of this paper at the interdisciplinary symposium on Mathematical Evidence and Argument held at the University of Bremen in 2017. I am grateful to the participants for their comments and particularly indebted to Christine Knipping and Eva Müller-Hill for their invitation and their hospitality in Bremen. I am also grateful to three anonymous referees for insightful and thorough comments.

## References

1. Aaronson, S. (2016). $$P\mathop = \limits^{?} NP$$. In J. F. Nash Jr. & M. T. Rassias (Eds.), Open problems in mathematics (pp. 1–122). Cham: Springer.Google Scholar
2. Aberdein, A. (2009). Mathematics and argumentation. Foundations of Science, 14(1–2), 1–8.Google Scholar
3. Aberdein, A. (2013a). Mathematical wit and mathematical cognition. Topics in Cognitive Science, 5(2), 231–250.Google Scholar
4. Aberdein, A. (2013b). The parallel structure of mathematical reasoning. In A. Aberdein & I. J. Dove (Eds.), The argument of mathematics (pp. 361–380). Dordrecht: Springer.Google Scholar
5. Azzouni, J. (2013). The relationship of derivations in artificial languages to ordinary rigorous mathematical proof. Philosophia Mathematica, 21(2), 247–254.Google Scholar
6. Baker, A. (2007). Is there a problem of induction for mathematics? In M. Leng, A. Paseau, & M. Potter (Eds.), Mathematical knowledge (pp. 59–73). Oxford: Oxford University Press.Google Scholar
7. Baldwin, J. T. (2013). Formalization, primitive concepts, and purity. Review of Symbolic Logic, 6(1), 87–128.Google Scholar
8. Baldwin, J. T. (2016). Foundations of mathematics: Reliability and clarity: The explanatory role of mathematical induction. In J. Väänänen (Ed.), WoLLIC 2016 (pp. 68–82). Berlin: Springer.Google Scholar
9. Barrett, O., Firk, F. W. K., Miller, S. J., & Turnage-Butterbaugh, C. (2016). From quantum systems to L-functions: Pair correlation statistics and beyond. In J. F. Nash Jr. & M. T. Rassias (Eds.), Open problems in mathematics (pp. 123–171). Cham: Springer.Google Scholar
10. Bench-Capon, T. (2012). The long and winding road: Forty years of argumentation. In B. Verheij, S. Szeider, & S. Woltran (Eds.), Computational models of argument: Proceedings of COMMA 2012 (pp. 3–10). Amsterdam: IOS Press.Google Scholar
11. Berk, L. A. (1982). Hilbert’s Thesis: Some considerations about formalizations of mathematics. Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
12. CadwalladerOlsker, T. (2011). What do we mean by mathematical proof? Journal of Humanistic Mathematics, 1(1), 33–60.Google Scholar
13. Chateaubriand, O. (2003). Proof and proving. O Que Nos Faz Penser, 17, 41–56.Google Scholar
14. Chen J.-R. (1978). On the representation of a large even integer as the sum of a prime and the product of at most two primes (II). Scientia Sinica, 21, 421–430.Google Scholar
15. Cheng, E. (2018). The art of logic: how to make sense in a world that doesn’t. London: Profile.Google Scholar
16. Chudnoff, E. (2013). Intuition. Oxford: Oxford University Press.Google Scholar
17. Chvátal, V. (2004). Sylvester–Gallai theorem and metric betweenness. Discrete and Computational Geometry, 31, 175–195.Google Scholar
18. Coates, J. (2016). The conjecture of Birch and Swinnerton-Dyer. In J. F. Nash Jr. & M. T. Rassias (Eds.), Open problems in mathematics (pp. 207–223). Cham: Springer.Google Scholar
19. Corneli, J., Martin, U., Murray-Rust, D., Nesin, G. R., & Pease, A. (2019). Argumentation theory for mathematical argument. Argumentation. .Google Scholar
20. Durand-Guerrier, V., Meyer, A., & Modeste, S. (2019). Didactical issues at the interface of mathematics and computer science. In G. Hanna, D. Reid, & M. de Villiers (Eds.), Proof technology in mathematics research and teaching. Cham: Springer. Forthcoming.Google Scholar
21. Epstein, R. L. (2013). Mathematics as the art of abstraction. In A. Aberdein & I. J. Dove (Eds.), The argument of mathematics (pp. 257–289). Dordrecht: Springer.Google Scholar
22. Fallis, D. (1997). The epistemic status of probabilistic proof. Journal of Philosophy, 94(4), 165–186.Google Scholar
23. Franklin, J. (1987). Non-deductive logic in mathematics. British Journal for the Philosophy of Science, 38(1), 1–18.Google Scholar
24. Goguen, J. (2001). What is a proof? Online at http://cseweb.ucsd.edu/~goguen/papers/proof.html. Accessed 6 Apr 2019
25. Gonthier, G. (2008). Formal proof—The four color theorem. Notices of the American Mathematical Society, 55(11), 1382–1393.Google Scholar
26. Hales, T. C. (2008). Formal proof. Notices of the American Mathematical Society, 55(11), 1370–1380.Google Scholar
27. Hales, T. C., Adams, M., Bauer, G., Dang, D. T., Harrison, J., Hoang, T. L., et al. (2017). A formal proof of the Kepler conjecture. Forum of Mathematics, Pi, 5(e2), 1–29.Google Scholar
28. Hanna, G. (1990). Some pedagogical aspects of proof. Interchange, 21(1), 6–13.Google Scholar
29. Inglis, M., & Mejía-Ramos, J. P. (2009). The effect of authority on the persuasiveness of mathematical arguments. Cognition and Instruction, 27(1), 25–50.Google Scholar
30. Kahle, R. (2019). Is there a “Hilbert thesis”? Studia Logica, 107(1), 145–165.Google Scholar
31. Knipping, C., & Reid, D. A. (2013). Revealing structures of argumentations in classroom proving processes. In A. Aberdein & I. J. Dove (Eds.), The argument of mathematics (pp. 119–146). Dordrecht: Springer.Google Scholar
32. Koleza, E., Metaxas, N., & Poli, K. (2017). Primary and secondary students’ argumentation competence: A case study. In Dooley, T., & Gueudet, G. (Eds.) Proceedings of the tenth congress of the European society for research in mathematics education (CERME10, February 15, 2017) (pp. 179–186). DCU Institute of Education & ERME, Dublin.Google Scholar
33. Konstantinidou, A., & Macagno, F. (2013). Understanding students’ reasoning: Argumentation schemes as an interpretation method in science education. Science & Education, 22(5), 1069–1087.Google Scholar
34. Larvor, B. (2016). Why the naïve derivation recipe model cannot explain how mathematicians’ proofs secure mathematical knowledge. Philosophia Mathematica, 24(3), 401–404.Google Scholar
35. Mac Lane, S. (1986). Mathematics, form and function. New York: Springer.Google Scholar
36. Macagno, F., & Konstantinidou, A. (2013). What students’ arguments can tell us: Using argumentation schemes in science education. Argumentation, 27(3), 225–243.Google Scholar
37. Martin, D. A. (1998). Mathematical evidence. In H. G. Dales & G. Oliveri (Eds.), Truth in mathematics (pp. 215–231). Oxford: Oxford University Press.Google Scholar
38. Metaxas, N. (2015). Mathematical argumentation of students participating in a mathematics–information technology project. International Research in Education, 3(1), 82–92.Google Scholar
39. Metaxas, N., Potari, D., & Zachariades, T. (2009). Studying teachers’ pedagogical argumentation. In Tzekaki, M., Kaldrimidou, M., & Sakonidis, H. (Eds.), Proceedings of the 33rd conference of the international group for the psychology of mathematics education (Vol. 4, pp. 121–128). PME, Thessaloniki.Google Scholar
40. Metaxas, N., Potari, D., & Zachariades, T. (2016). Analysis of a teacher’s pedagogical arguments using Toulmin’s model and argumentation schemes. Educational Studies in Mathematics, 93(3), 383–397.Google Scholar
41. Modeste, S. (2016). Impact of informatics on mathematics and its teaching: On the importance of epistemological analysis to feed didactical research. In F. Gadducci & M. Tavosanis (Eds.), History and philosophy of computing: Third international conference, HaPoC 2015 Pisa, Italy, October 8–11, 2015 (pp. 243–255). Cham: Springer.Google Scholar
42. Morris, W., & Soltan, V. (2016). The Erdős-Szekeres problem. In J. F. Nash Jr. & M. T. Rassias (Eds.), Open problems in mathematics (pp. 351–375). Cham: Springer.Google Scholar
43. Nash, J. F., Jr., & Rassias, M. T. (Eds.). (2016). Open problems in mathematics. Cham: Springer.Google Scholar
44. Paseau, A. (2015). Knowledge of mathematics without proof. British Journal for the Philosophy of Science, 66, 775–799.Google Scholar
45. Pawlowski, P., & Urbaniak, R. (2018). Many-valued logic of informal provability: a non-deterministic strategy. Review of Symbolic Logic, 11(2), 207–223.Google Scholar
46. Pease, A., & Aberdein, A. (2011). Five theories of reasoning: Interconnections and applications to mathematics. Logic and Logical Philosophy, 20(1–2), 7–57.Google Scholar
47. Pease, A., Lawrence, J., Budzynska, K., Corneli, J., & Reed, C. (2017). Lakatos-style collaborative mathematics through dialectical, structured and abstract argumentation. Artificial Intelligence, 246, 181–219.Google Scholar
48. Ramaré, O. (1995). On Šnirel’man’s constant. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4th series, 22, 645–706.Google Scholar
49. Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica, 7(3), 5–41.Google Scholar
50. Reed, C., Budzynska, K., Duthie, R., Janier, M., Konat, B., Lawrence, J., et al. (2017). The argument web: An online ecosystem of tools, systems and services for argumentation. Philosophy and Technology, 30(2), 137–160.Google Scholar
51. Soifer, A. (2016). The Hadwiger–Nelson problem. In J. F. Nash Jr. & M. T. Rassias (Eds.), Open problems in mathematics (pp. 439–457). Cham: Springer.Google Scholar
52. Stefaneas, P., & Vandoulakis, I. M. (2012). The web as a tool for proving. Metaphilosophy, 43(4), 480–498.Google Scholar
53. Su, F. E. (2017). Mathematics for human flourishing. The American Mathematical Monthly, 124(6), 483–493.Google Scholar
54. Sundholm, G. (2012). “Inference versus consequence” revisited: Inference, consequence, conditional, implication. Synthese, 187(3), 943–956.Google Scholar
55. Szemerédi, E. (2016). Erdős’s unit distance problem. In J. F. Nash Jr. & M. T. Rassias (Eds.), Open problems in mathematics (pp. 459–477). Cham: Springer.Google Scholar
56. Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.Google Scholar
57. Van Bendegem, J. P. (2005). Proofs and arguments: The special case of mathematics. In R. Festa, A. Aliseda, & J. Peijnenburg (Eds.), Cognitive structures in scientific inquiry: Essays in debate with Theo Kuipers (Vol. 2, pp. 157–169). Amsterdam: Rodopi.Google Scholar
58. Vaughan, R. C. (2016). Goldbach’s conjectures: A historical perspective. In J. F. Nash Jr. & M. T. Rassias (Eds.), Open problems in mathematics (pp. 479–520). Cham: Springer.Google Scholar
59. Voisin, C. (2016). The Hodge conjecture. In J. F. Nash Jr. & M. T. Rassias (Eds.), Open problems in mathematics (pp. 521–543). Cham: Springer.Google Scholar
60. Walton, D. N., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge: Cambridge University Press.Google Scholar
61. Weber, K., & Alcock, L. (2004). Semantic and syntactic proof productions. Educational Studies in Mathematics, 56, 209–234.Google Scholar