Skip to main content
Log in

Evidence, proofs, and derivations

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

The traditional view of evidence in mathematics is that evidence is just proof and proof is just derivation. There are good reasons for thinking that this view should be rejected: it misrepresents both historical and current mathematical practice. Nonetheless, evidence, proof, and derivation are closely intertwined. This paper seeks to tease these concepts apart. It emphasizes the role of argumentation as a context shared by evidence, proofs, and derivations. The utility of argumentation theory, in general, and argumentation schemes, in particular, as a methodology for the study of mathematical practice is thereby demonstrated. Argumentation schemes represent an almost untapped resource for mathematics education. Notably, they provide a consistent treatment of rigorous and non-rigorous argumentation, thereby working to exhibit the continuity of reasoning in mathematics with reasoning in other areas. Moreover, since argumentation schemes are a comparatively mature methodology, there is a substantial body of existing work to draw upon, including some increasingly sophisticated software tools. Such tools have significant potential for the analysis and evaluation of mathematical argumentation. The first four sections of the paper address the relationships of evidence to proof, proof to derivation, argument to proof, and argument to evidence, respectively. The final section directly addresses some of the educational implications of an argumentation scheme account of mathematical reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This is sometimes referred to as Hilbert’s Thesis, although that name is more properly reserved for the narrower claim that every proof can be formalized as a derivation in first-order logic (Kahle 2019).

  2. This reflects what has been called Tait’s Maxim: ‘The notion of formal proof was invented to study the existence of proofs, not methods of proof’ (Baldwin 2013, 114).

  3. For example, for Saunders Mac Lane, ‘the test for the correctness of a proposed proof is by formal criteria and not by reference to the subject matter at issue’ (Mac Lane 1986, 378) and Thomas Hales characterizes formal proof as providing ‘a thorough verification of my own research that goes beyond what the traditional peer review process has been able to provide’ (Hales 2008, 1378).

  4. For a more protracted discussion of how these two models of reasoning are related, see (Pease and Aberdein 2011, 28 ff.). For an alternative account, see (Konstantinidou and Macagno 2013, 1070).

  5. The mathematical uses of Argument from Positive Consequences are also discussed, together with some other schemes not in Table 1, in work by Nikolaos Metaxas and colleagues (Metaxas 2015, 84; Metaxas et al. 2016, 387).

  6. For a more extensive discussion of mathematical uses of Scheme 2, see (Aberdein 2013a, 244).

  7. It may be objected that this results in a regress, since the software checking the derivation trace must itself be checked. However, it is what Hales has called ‘a rather manageable regress’ (Hales 2008, 1376). The kernel of such proof checking software is very carefully designed to be small enough and clear enough to be amenable to thorough human checking.

References

  • Aaronson, S. (2016). \(P\mathop = \limits^{?} NP\). In J. F. Nash Jr. & M. T. Rassias (Eds.), Open problems in mathematics (pp. 1–122). Cham: Springer.

    Google Scholar 

  • Aberdein, A. (2009). Mathematics and argumentation. Foundations of Science, 14(1–2), 1–8.

    Article  Google Scholar 

  • Aberdein, A. (2013a). Mathematical wit and mathematical cognition. Topics in Cognitive Science, 5(2), 231–250.

    Article  Google Scholar 

  • Aberdein, A. (2013b). The parallel structure of mathematical reasoning. In A. Aberdein & I. J. Dove (Eds.), The argument of mathematics (pp. 361–380). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Azzouni, J. (2013). The relationship of derivations in artificial languages to ordinary rigorous mathematical proof. Philosophia Mathematica, 21(2), 247–254.

    Article  Google Scholar 

  • Baker, A. (2007). Is there a problem of induction for mathematics? In M. Leng, A. Paseau, & M. Potter (Eds.), Mathematical knowledge (pp. 59–73). Oxford: Oxford University Press.

    Google Scholar 

  • Baldwin, J. T. (2013). Formalization, primitive concepts, and purity. Review of Symbolic Logic, 6(1), 87–128.

    Article  Google Scholar 

  • Baldwin, J. T. (2016). Foundations of mathematics: Reliability and clarity: The explanatory role of mathematical induction. In J. Väänänen (Ed.), WoLLIC 2016 (pp. 68–82). Berlin: Springer.

    Google Scholar 

  • Barrett, O., Firk, F. W. K., Miller, S. J., & Turnage-Butterbaugh, C. (2016). From quantum systems to L-functions: Pair correlation statistics and beyond. In J. F. Nash Jr. & M. T. Rassias (Eds.), Open problems in mathematics (pp. 123–171). Cham: Springer.

    Chapter  Google Scholar 

  • Bench-Capon, T. (2012). The long and winding road: Forty years of argumentation. In B. Verheij, S. Szeider, & S. Woltran (Eds.), Computational models of argument: Proceedings of COMMA 2012 (pp. 3–10). Amsterdam: IOS Press.

    Google Scholar 

  • Berk, L. A. (1982). Hilbert’s Thesis: Some considerations about formalizations of mathematics. Ph.D. thesis, Massachusetts Institute of Technology.

  • CadwalladerOlsker, T. (2011). What do we mean by mathematical proof? Journal of Humanistic Mathematics, 1(1), 33–60.

    Article  Google Scholar 

  • Chateaubriand, O. (2003). Proof and proving. O Que Nos Faz Penser, 17, 41–56.

    Google Scholar 

  • Chen J.-R. (1978). On the representation of a large even integer as the sum of a prime and the product of at most two primes (II). Scientia Sinica, 21, 421–430.

    Google Scholar 

  • Cheng, E. (2018). The art of logic: how to make sense in a world that doesn’t. London: Profile.

    Google Scholar 

  • Chudnoff, E. (2013). Intuition. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Chvátal, V. (2004). Sylvester–Gallai theorem and metric betweenness. Discrete and Computational Geometry, 31, 175–195.

    Article  Google Scholar 

  • Coates, J. (2016). The conjecture of Birch and Swinnerton-Dyer. In J. F. Nash Jr. & M. T. Rassias (Eds.), Open problems in mathematics (pp. 207–223). Cham: Springer.

    Chapter  Google Scholar 

  • Corneli, J., Martin, U., Murray-Rust, D., Nesin, G. R., & Pease, A. (2019). Argumentation theory for mathematical argument. Argumentation. https://doi.org/10.1007/s10503-018-9474-x.

    Article  Google Scholar 

  • Durand-Guerrier, V., Meyer, A., & Modeste, S. (2019). Didactical issues at the interface of mathematics and computer science. In G. Hanna, D. Reid, & M. de Villiers (Eds.), Proof technology in mathematics research and teaching. Cham: Springer. Forthcoming.

  • Epstein, R. L. (2013). Mathematics as the art of abstraction. In A. Aberdein & I. J. Dove (Eds.), The argument of mathematics (pp. 257–289). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Fallis, D. (1997). The epistemic status of probabilistic proof. Journal of Philosophy, 94(4), 165–186.

    Article  Google Scholar 

  • Franklin, J. (1987). Non-deductive logic in mathematics. British Journal for the Philosophy of Science, 38(1), 1–18.

    Article  Google Scholar 

  • Goguen, J. (2001). What is a proof? Online at http://cseweb.ucsd.edu/~goguen/papers/proof.html. Accessed 6 Apr 2019

  • Gonthier, G. (2008). Formal proof—The four color theorem. Notices of the American Mathematical Society, 55(11), 1382–1393.

    Google Scholar 

  • Hales, T. C. (2008). Formal proof. Notices of the American Mathematical Society, 55(11), 1370–1380.

    Google Scholar 

  • Hales, T. C., Adams, M., Bauer, G., Dang, D. T., Harrison, J., Hoang, T. L., et al. (2017). A formal proof of the Kepler conjecture. Forum of Mathematics, Pi, 5(e2), 1–29.

    Google Scholar 

  • Hanna, G. (1990). Some pedagogical aspects of proof. Interchange, 21(1), 6–13.

    Article  Google Scholar 

  • Inglis, M., & Mejía-Ramos, J. P. (2009). The effect of authority on the persuasiveness of mathematical arguments. Cognition and Instruction, 27(1), 25–50.

    Article  Google Scholar 

  • Kahle, R. (2019). Is there a “Hilbert thesis”? Studia Logica, 107(1), 145–165.

    Article  Google Scholar 

  • Knipping, C., & Reid, D. A. (2013). Revealing structures of argumentations in classroom proving processes. In A. Aberdein & I. J. Dove (Eds.), The argument of mathematics (pp. 119–146). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Koleza, E., Metaxas, N., & Poli, K. (2017). Primary and secondary students’ argumentation competence: A case study. In Dooley, T., & Gueudet, G. (Eds.) Proceedings of the tenth congress of the European society for research in mathematics education (CERME10, February 15, 2017) (pp. 179–186). DCU Institute of Education & ERME, Dublin.

  • Konstantinidou, A., & Macagno, F. (2013). Understanding students’ reasoning: Argumentation schemes as an interpretation method in science education. Science & Education, 22(5), 1069–1087.

    Article  Google Scholar 

  • Larvor, B. (2016). Why the naïve derivation recipe model cannot explain how mathematicians’ proofs secure mathematical knowledge. Philosophia Mathematica, 24(3), 401–404.

    Article  Google Scholar 

  • Mac Lane, S. (1986). Mathematics, form and function. New York: Springer.

    Book  Google Scholar 

  • Macagno, F., & Konstantinidou, A. (2013). What students’ arguments can tell us: Using argumentation schemes in science education. Argumentation, 27(3), 225–243.

    Article  Google Scholar 

  • Martin, D. A. (1998). Mathematical evidence. In H. G. Dales & G. Oliveri (Eds.), Truth in mathematics (pp. 215–231). Oxford: Oxford University Press.

    Google Scholar 

  • Metaxas, N. (2015). Mathematical argumentation of students participating in a mathematics–information technology project. International Research in Education, 3(1), 82–92.

    Article  Google Scholar 

  • Metaxas, N., Potari, D., & Zachariades, T. (2009). Studying teachers’ pedagogical argumentation. In Tzekaki, M., Kaldrimidou, M., & Sakonidis, H. (Eds.), Proceedings of the 33rd conference of the international group for the psychology of mathematics education (Vol. 4, pp. 121–128). PME, Thessaloniki.

  • Metaxas, N., Potari, D., & Zachariades, T. (2016). Analysis of a teacher’s pedagogical arguments using Toulmin’s model and argumentation schemes. Educational Studies in Mathematics, 93(3), 383–397.

    Article  Google Scholar 

  • Modeste, S. (2016). Impact of informatics on mathematics and its teaching: On the importance of epistemological analysis to feed didactical research. In F. Gadducci & M. Tavosanis (Eds.), History and philosophy of computing: Third international conference, HaPoC 2015 Pisa, Italy, October 8–11, 2015 (pp. 243–255). Cham: Springer.

    Chapter  Google Scholar 

  • Morris, W., & Soltan, V. (2016). The Erdős-Szekeres problem. In J. F. Nash Jr. & M. T. Rassias (Eds.), Open problems in mathematics (pp. 351–375). Cham: Springer.

    Chapter  Google Scholar 

  • Nash, J. F., Jr., & Rassias, M. T. (Eds.). (2016). Open problems in mathematics. Cham: Springer.

    Google Scholar 

  • Paseau, A. (2015). Knowledge of mathematics without proof. British Journal for the Philosophy of Science, 66, 775–799.

    Article  Google Scholar 

  • Pawlowski, P., & Urbaniak, R. (2018). Many-valued logic of informal provability: a non-deterministic strategy. Review of Symbolic Logic, 11(2), 207–223.

    Article  Google Scholar 

  • Pease, A., & Aberdein, A. (2011). Five theories of reasoning: Interconnections and applications to mathematics. Logic and Logical Philosophy, 20(1–2), 7–57.

    Google Scholar 

  • Pease, A., Lawrence, J., Budzynska, K., Corneli, J., & Reed, C. (2017). Lakatos-style collaborative mathematics through dialectical, structured and abstract argumentation. Artificial Intelligence, 246, 181–219.

    Article  Google Scholar 

  • Ramaré, O. (1995). On Šnirel’man’s constant. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4th series, 22, 645–706.

  • Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica, 7(3), 5–41.

    Article  Google Scholar 

  • Reed, C., Budzynska, K., Duthie, R., Janier, M., Konat, B., Lawrence, J., et al. (2017). The argument web: An online ecosystem of tools, systems and services for argumentation. Philosophy and Technology, 30(2), 137–160.

    Article  Google Scholar 

  • Soifer, A. (2016). The Hadwiger–Nelson problem. In J. F. Nash Jr. & M. T. Rassias (Eds.), Open problems in mathematics (pp. 439–457). Cham: Springer.

    Chapter  Google Scholar 

  • Stefaneas, P., & Vandoulakis, I. M. (2012). The web as a tool for proving. Metaphilosophy, 43(4), 480–498.

    Article  Google Scholar 

  • Su, F. E. (2017). Mathematics for human flourishing. The American Mathematical Monthly, 124(6), 483–493.

    Article  Google Scholar 

  • Sundholm, G. (2012). “Inference versus consequence” revisited: Inference, consequence, conditional, implication. Synthese, 187(3), 943–956.

    Article  Google Scholar 

  • Szemerédi, E. (2016). Erdős’s unit distance problem. In J. F. Nash Jr. & M. T. Rassias (Eds.), Open problems in mathematics (pp. 459–477). Cham: Springer.

    Chapter  Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Van Bendegem, J. P. (2005). Proofs and arguments: The special case of mathematics. In R. Festa, A. Aliseda, & J. Peijnenburg (Eds.), Cognitive structures in scientific inquiry: Essays in debate with Theo Kuipers (Vol. 2, pp. 157–169). Amsterdam: Rodopi.

    Google Scholar 

  • Vaughan, R. C. (2016). Goldbach’s conjectures: A historical perspective. In J. F. Nash Jr. & M. T. Rassias (Eds.), Open problems in mathematics (pp. 479–520). Cham: Springer.

    Chapter  Google Scholar 

  • Voisin, C. (2016). The Hodge conjecture. In J. F. Nash Jr. & M. T. Rassias (Eds.), Open problems in mathematics (pp. 521–543). Cham: Springer.

    Chapter  Google Scholar 

  • Walton, D. N., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Weber, K., & Alcock, L. (2004). Semantic and syntactic proof productions. Educational Studies in Mathematics, 56, 209–234.

    Article  Google Scholar 

Download references

Acknowledgements

I presented an earlier version of this paper at the interdisciplinary symposium on Mathematical Evidence and Argument held at the University of Bremen in 2017. I am grateful to the participants for their comments and particularly indebted to Christine Knipping and Eva Müller-Hill for their invitation and their hospitality in Bremen. I am also grateful to three anonymous referees for insightful and thorough comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Aberdein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aberdein, A. Evidence, proofs, and derivations. ZDM Mathematics Education 51, 825–834 (2019). https://doi.org/10.1007/s11858-019-01049-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-019-01049-5

Keywords

Navigation