## Abstract

The traditional view of evidence in mathematics is that evidence is just proof and proof is just derivation. There are good reasons for thinking that this view should be rejected: it misrepresents both historical and current mathematical practice. Nonetheless, evidence, proof, and derivation are closely intertwined. This paper seeks to tease these concepts apart. It emphasizes the role of argumentation as a context shared by evidence, proofs, and derivations. The utility of argumentation theory, in general, and argumentation schemes, in particular, as a methodology for the study of mathematical practice is thereby demonstrated. Argumentation schemes represent an almost untapped resource for mathematics education. Notably, they provide a consistent treatment of rigorous and non-rigorous argumentation, thereby working to exhibit the continuity of reasoning in mathematics with reasoning in other areas. Moreover, since argumentation schemes are a comparatively mature methodology, there is a substantial body of existing work to draw upon, including some increasingly sophisticated software tools. Such tools have significant potential for the analysis and evaluation of mathematical argumentation. The first four sections of the paper address the relationships of evidence to proof, proof to derivation, argument to proof, and argument to evidence, respectively. The final section directly addresses some of the educational implications of an argumentation scheme account of mathematical reasoning.

## Keywords

Argument Argumentation schemes Derivation Evidence Proof## Notes

### Acknowledgements

I presented an earlier version of this paper at the interdisciplinary symposium on Mathematical Evidence and Argument held at the University of Bremen in 2017. I am grateful to the participants for their comments and particularly indebted to Christine Knipping and Eva Müller-Hill for their invitation and their hospitality in Bremen. I am also grateful to three anonymous referees for insightful and thorough comments.

## References

- Aaronson, S. (2016). \(P\mathop = \limits^{?} NP\). In J. F. Nash Jr. & M. T. Rassias (Eds.),
*Open problems in mathematics*(pp. 1–122). Cham: Springer.Google Scholar - Aberdein, A. (2009). Mathematics and argumentation.
*Foundations of Science,**14*(1–2), 1–8.Google Scholar - Aberdein, A. (2013a). Mathematical wit and mathematical cognition.
*Topics in Cognitive Science,**5*(2), 231–250.Google Scholar - Aberdein, A. (2013b). The parallel structure of mathematical reasoning. In A. Aberdein & I. J. Dove (Eds.),
*The argument of mathematics*(pp. 361–380). Dordrecht: Springer.Google Scholar - Azzouni, J. (2013). The relationship of derivations in artificial languages to ordinary rigorous mathematical proof.
*Philosophia Mathematica,**21*(2), 247–254.Google Scholar - Baker, A. (2007). Is there a problem of induction for mathematics? In M. Leng, A. Paseau, & M. Potter (Eds.),
*Mathematical knowledge*(pp. 59–73). Oxford: Oxford University Press.Google Scholar - Baldwin, J. T. (2013). Formalization, primitive concepts, and purity.
*Review of Symbolic Logic,**6*(1), 87–128.Google Scholar - Baldwin, J. T. (2016). Foundations of mathematics: Reliability and clarity: The explanatory role of mathematical induction. In J. Väänänen (Ed.),
*WoLLIC 2016*(pp. 68–82). Berlin: Springer.Google Scholar - Barrett, O., Firk, F. W. K., Miller, S. J., & Turnage-Butterbaugh, C. (2016). From quantum systems to
*L*-functions: Pair correlation statistics and beyond. In J. F. Nash Jr. & M. T. Rassias (Eds.),*Open problems in mathematics*(pp. 123–171). Cham: Springer.Google Scholar - Bench-Capon, T. (2012). The long and winding road: Forty years of argumentation. In B. Verheij, S. Szeider, & S. Woltran (Eds.),
*Computational models of argument: Proceedings of COMMA 2012*(pp. 3–10). Amsterdam: IOS Press.Google Scholar - Berk, L. A. (1982).
*Hilbert’s Thesis: Some considerations about formalizations of mathematics*. Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar - CadwalladerOlsker, T. (2011). What do
*we*mean by mathematical proof?*Journal of Humanistic Mathematics,**1*(1), 33–60.Google Scholar - Chen J.-R. (1978). On the representation of a large even integer as the sum of a prime and the product of at most two primes (II).
*Scientia Sinica*,*21*, 421–430.Google Scholar - Cheng, E. (2018).
*The art of logic: how to make sense in a world that doesn’t*. London: Profile.Google Scholar - Chudnoff, E. (2013).
*Intuition*. Oxford: Oxford University Press.Google Scholar - Chvátal, V. (2004). Sylvester–Gallai theorem and metric betweenness.
*Discrete and Computational Geometry,**31,*175–195.Google Scholar - Coates, J. (2016). The conjecture of Birch and Swinnerton-Dyer. In J. F. Nash Jr. & M. T. Rassias (Eds.),
*Open problems in mathematics*(pp. 207–223). Cham: Springer.Google Scholar - Corneli, J., Martin, U., Murray-Rust, D., Nesin, G. R., & Pease, A. (2019). Argumentation theory for mathematical argument.
*Argumentation*. https://doi.org/10.1007/s10503-018-9474-x.Google Scholar - Durand-Guerrier, V., Meyer, A., & Modeste, S. (2019). Didactical issues at the interface of mathematics and computer science. In G. Hanna, D. Reid, & M. de Villiers (Eds.),
*Proof technology in mathematics research and teaching*. Cham: Springer. Forthcoming.Google Scholar - Epstein, R. L. (2013). Mathematics as the art of abstraction. In A. Aberdein & I. J. Dove (Eds.),
*The argument of mathematics*(pp. 257–289). Dordrecht: Springer.Google Scholar - Fallis, D. (1997). The epistemic status of probabilistic proof.
*Journal of Philosophy,**94*(4), 165–186.Google Scholar - Franklin, J. (1987). Non-deductive logic in mathematics.
*British Journal for the Philosophy of Science,**38*(1), 1–18.Google Scholar - Goguen, J. (2001). What is a proof? Online at http://cseweb.ucsd.edu/~goguen/papers/proof.html. Accessed 6 Apr 2019
- Gonthier, G. (2008). Formal proof—The four color theorem.
*Notices of the American Mathematical Society,**55*(11), 1382–1393.Google Scholar - Hales, T. C. (2008). Formal proof.
*Notices of the American Mathematical Society,**55*(11), 1370–1380.Google Scholar - Hales, T. C., Adams, M., Bauer, G., Dang, D. T., Harrison, J., Hoang, T. L., et al. (2017). A formal proof of the Kepler conjecture.
*Forum of Mathematics, Pi,**5*(e2), 1–29.Google Scholar - Inglis, M., & Mejía-Ramos, J. P. (2009). The effect of authority on the persuasiveness of mathematical arguments.
*Cognition and Instruction,**27*(1), 25–50.Google Scholar - Knipping, C., & Reid, D. A. (2013). Revealing structures of argumentations in classroom proving processes. In A. Aberdein & I. J. Dove (Eds.),
*The argument of mathematics*(pp. 119–146). Dordrecht: Springer.Google Scholar - Koleza, E., Metaxas, N., & Poli, K. (2017). Primary and secondary students’ argumentation competence: A case study. In Dooley, T., & Gueudet, G. (Eds.)
*Proceedings of the tenth congress of the European society for research in mathematics education*(*CERME10, February 1*–*5, 2017*) (pp. 179–186). DCU Institute of Education & ERME, Dublin.Google Scholar - Konstantinidou, A., & Macagno, F. (2013). Understanding students’ reasoning: Argumentation schemes as an interpretation method in science education.
*Science & Education,**22*(5), 1069–1087.Google Scholar - Larvor, B. (2016). Why the naïve derivation recipe model cannot explain how mathematicians’ proofs secure mathematical knowledge.
*Philosophia Mathematica,**24*(3), 401–404.Google Scholar - Mac Lane, S. (1986).
*Mathematics, form and function*. New York: Springer.Google Scholar - Macagno, F., & Konstantinidou, A. (2013). What students’ arguments can tell us: Using argumentation schemes in science education.
*Argumentation,**27*(3), 225–243.Google Scholar - Martin, D. A. (1998). Mathematical evidence. In H. G. Dales & G. Oliveri (Eds.),
*Truth in mathematics*(pp. 215–231). Oxford: Oxford University Press.Google Scholar - Metaxas, N. (2015). Mathematical argumentation of students participating in a mathematics–information technology project.
*International Research in Education,**3*(1), 82–92.Google Scholar - Metaxas, N., Potari, D., & Zachariades, T. (2009). Studying teachers’ pedagogical argumentation. In Tzekaki, M., Kaldrimidou, M., & Sakonidis, H. (Eds.),
*Proceedings of the 33rd conference of the international group for the psychology of mathematics education*(Vol. 4, pp. 121–128). PME, Thessaloniki.Google Scholar - Metaxas, N., Potari, D., & Zachariades, T. (2016). Analysis of a teacher’s pedagogical arguments using Toulmin’s model and argumentation schemes.
*Educational Studies in Mathematics,**93*(3), 383–397.Google Scholar - Modeste, S. (2016). Impact of informatics on mathematics and its teaching: On the importance of epistemological analysis to feed didactical research. In F. Gadducci & M. Tavosanis (Eds.),
*History and philosophy of computing: Third international conference, HaPoC 2015 Pisa, Italy, October 8–11, 2015*(pp. 243–255). Cham: Springer.Google Scholar - Morris, W., & Soltan, V. (2016). The Erdős-Szekeres problem. In J. F. Nash Jr. & M. T. Rassias (Eds.),
*Open problems in mathematics*(pp. 351–375). Cham: Springer.Google Scholar - Nash, J. F., Jr., & Rassias, M. T. (Eds.). (2016).
*Open problems in mathematics*. Cham: Springer.Google Scholar - Paseau, A. (2015). Knowledge of mathematics without proof.
*British Journal for the Philosophy of Science,**66,*775–799.Google Scholar - Pawlowski, P., & Urbaniak, R. (2018). Many-valued logic of informal provability: a non-deterministic strategy.
*Review of Symbolic Logic,**11*(2), 207–223.Google Scholar - Pease, A., & Aberdein, A. (2011). Five theories of reasoning: Interconnections and applications to mathematics.
*Logic and Logical Philosophy,**20*(1–2), 7–57.Google Scholar - Pease, A., Lawrence, J., Budzynska, K., Corneli, J., & Reed, C. (2017). Lakatos-style collaborative mathematics through dialectical, structured and abstract argumentation.
*Artificial Intelligence,**246,*181–219.Google Scholar - Ramaré, O. (1995). On Šnirel’man’s constant.
*Annali della Scuola Normale Superiore di Pisa, Classe di Scienze*4th series,*22*, 645–706.Google Scholar - Reed, C., Budzynska, K., Duthie, R., Janier, M., Konat, B., Lawrence, J., et al. (2017). The argument web: An online ecosystem of tools, systems and services for argumentation.
*Philosophy and Technology,**30*(2), 137–160.Google Scholar - Soifer, A. (2016). The Hadwiger–Nelson problem. In J. F. Nash Jr. & M. T. Rassias (Eds.),
*Open problems in mathematics*(pp. 439–457). Cham: Springer.Google Scholar - Stefaneas, P., & Vandoulakis, I. M. (2012). The web as a tool for proving.
*Metaphilosophy,**43*(4), 480–498.Google Scholar - Su, F. E. (2017). Mathematics for human flourishing.
*The American Mathematical Monthly,**124*(6), 483–493.Google Scholar - Sundholm, G. (2012). “Inference versus consequence” revisited: Inference, consequence, conditional, implication.
*Synthese,**187*(3), 943–956.Google Scholar - Szemerédi, E. (2016). Erdős’s unit distance problem. In J. F. Nash Jr. & M. T. Rassias (Eds.),
*Open problems in mathematics*(pp. 459–477). Cham: Springer.Google Scholar - Toulmin, S. (1958).
*The uses of argument*. Cambridge: Cambridge University Press.Google Scholar - Van Bendegem, J. P. (2005). Proofs and arguments: The special case of mathematics. In R. Festa, A. Aliseda, & J. Peijnenburg (Eds.),
*Cognitive structures in scientific inquiry: Essays in debate with Theo Kuipers*(Vol. 2, pp. 157–169). Amsterdam: Rodopi.Google Scholar - Vaughan, R. C. (2016). Goldbach’s conjectures: A historical perspective. In J. F. Nash Jr. & M. T. Rassias (Eds.),
*Open problems in mathematics*(pp. 479–520). Cham: Springer.Google Scholar - Voisin, C. (2016). The Hodge conjecture. In J. F. Nash Jr. & M. T. Rassias (Eds.),
*Open problems in mathematics*(pp. 521–543). Cham: Springer.Google Scholar - Walton, D. N., Reed, C., & Macagno, F. (2008).
*Argumentation schemes*. Cambridge: Cambridge University Press.Google Scholar - Weber, K., & Alcock, L. (2004). Semantic and syntactic proof productions.
*Educational Studies in Mathematics,**56,*209–234.Google Scholar