ZDM

, Volume 48, Issue 1–2, pp 111–124 | Cite as

Measuring mathematics teachers’ professional competence by using video clips (COACTIV video)

Original Article

Abstract

The COACTIV video study is part of the COACTIV research program in which secondary mathematics teachers whose students participated in PISA 03/04 were examined, with respect to their professional knowledge, motivational orientations, beliefs, and self-regulation. In the video study, 284 German secondary mathematics teachers were asked to specify how they would continue lessons shown in three short video clips that all ended at “educationally crucial” points. From the teachers’ written responses, which were coded by two independent evaluators according to five dimensions of high-quality teaching, their “situated reaction competency” (SRC) was inferred. Results relating to differences in school type (e.g., teachers from the German academic track performing better) and the relationship of SRC to other teacher characteristics (e.g., SRC was positively related to constructivist beliefs), as well as its impact on specific aspects of instructional quality, indicated the validity of the instrument.

Keywords

COACTIV Expertise Mathematics Pedagogical content knowledge Professional competence Teacher Video study 

References

  1. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407.CrossRefGoogle Scholar
  2. Baumert, J., Klieme, E., Neubrand, J., Prenzel, M., Schiefele, U., Schneider, W., et al. (Hrsg.). (2001). PISA 2000: Basiskompetenzen von Schülerinnen und Schülern im internationalen Vergleich. Opladen: Leske + Budrich.Google Scholar
  3. Baumert, J., & Kunter, M. (2013). The COACTIV model of teachers’ professional competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers, mathematics teacher education, 8 (pp. 25–48). New York: Springer.CrossRefGoogle Scholar
  4. Baumert, J., Kunter, M., Blum, W., Brunner, M., Dubberke, T., Jordan, A., et al. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom and student progress. American Educational Research Journal, 47(1), 133–180. doi:10.3102/0002831209345157.CrossRefGoogle Scholar
  5. Biza, I., Nardi, E., & Zachariades, T. (2007). Using tasks to explore teacher knowledge in situation-specific contexts. Journal of Mathematics Teacher Education, 10(4–6), 301–309.CrossRefGoogle Scholar
  6. Blömeke, S., Gustafsson, J. E., & Shavelson, R. J. (2015a). Beyond dichotomies. Competence viewed as a continuum. Zeitschrift für Psychologie, 223(1), 3–13. doi:10.1027/2151-2604/a000194.CrossRefGoogle Scholar
  7. Blömeke, S., Hoth, J., Döhrmann, M., Busse, A., Kaiser, G., & König, J. (2015b). Teacher change during induction: Development of beginning primary teachers’ knowledge, beliefs and performance. International Journal of Science and Mathematics Education, 13, 287–308.CrossRefGoogle Scholar
  8. Blömeke, S., & Kaiser, G. (2014). Theoretical framework, study design and main results of TEDS-M. In S. Blömeke, F.-J. Hsieh, G. Kaiser, & W. H. Schmidt (Eds.), International perspectives on teacher knowledge, beliefs and opportunities to learn (pp. 19–48). Dordrecht: Springer.CrossRefGoogle Scholar
  9. Blömeke, S., König, J., Busse, A., Suhl, U., Benthien, J., Döhrmann, M., & Kaiser, G. (2014). Von der Lehrerausbildung in den Beruf—Fachbezogenes Wissen als Voraussetzung für Wahrnehmung, Interpretation und Handeln im Unterricht. Zeitschrift für Erziehungswissenschaft, 17(3), 509–542.CrossRefGoogle Scholar
  10. Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (ICTMA14) (pp. 15–30). New York: Springer.CrossRefGoogle Scholar
  11. Borko, H., Koellner, K., Jacobs, J., & Seago, N. (2011). Using video representations of teaching in practice-based professional development programs. ZDM—The International Journal on Mathematics Education, 43(1), 175–187.CrossRefGoogle Scholar
  12. Brophy, J. (Ed.). (2004). Using Video in Teacher Education. Oxford: Emerald.Google Scholar
  13. Buchholtz, N., Kaiser, G., & Blömeke, S. (2014). Die Erhebung mathematikdidaktischen Wissens—Konzeptualisierung einer komplexen Domäne. Journal für Mathematikdidaktik, 35(1), 101–128.CrossRefGoogle Scholar
  14. Cobb, P. (1994). Where is the mind? Constructivist and sociocultural perspectives on mathematical development. Educational Researcher, 23(7), 13–20.CrossRefGoogle Scholar
  15. Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. doi:10.1037/0033-2909.112.1.155.CrossRefGoogle Scholar
  16. Collins, A. M., Greeno, J. G., & Resnick, L. B. (2004). Educational learning theory. In N. J. Smelser & P. B. Baltes (Eds.), International encyclopedia of the social and behavioral sciences (Vol. 6, pp. 4276–4279). Oxford: Elsevier.Google Scholar
  17. Cortina, K. S., & Thames, M. H. (2013). Teacher Education in Germany. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss & M. Neubrand (Eds.), Cognitive Activation in the Mathematics Classroom and Professional Competence of Teachers, Mathematics Teacher Education (Vol. 8, pp. 49–62). New York: Springer.CrossRefGoogle Scholar
  18. Depaepe, F., Verschaffel, L., & Kelchtermans, G. (2013). Pedagogical content knowledge: A systematic review of the way in which the concept has pervaded mathematics educational research. Teaching and Teacher Education, 34, 12–25.CrossRefGoogle Scholar
  19. Döhrmann, M., Kaiser, G., & Blömeke, S. (2012). The conceptualisation of mathematics competencies in the international teacher education study TEDS-M. ZDM—The International Journal on Mathematics Education, 44(3), 325–340.CrossRefGoogle Scholar
  20. Doyle, W. (2006). Ecological approaches to classroom management. In C. M. Evertson & C. S. Weinstein (Eds.), Handbook of classroom management: Research, practice and contemporary issues (pp. 97–125). Mahwah: Erlbaum.Google Scholar
  21. Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100(3), 363–406.CrossRefGoogle Scholar
  22. Fan, X., & Sivo, S. A. (2007). Sensitivity of fit indices to model misspecification and model types. Multivariate Behavioral Research, 42(3), 509–529.CrossRefGoogle Scholar
  23. Field, A. (2013). Discovering statistics using IBM SPSS statistics. London: Sage.Google Scholar
  24. Goodwin, C. (1994). Professional vision. American Anthropologist, 96, 606–633. doi:10.1525/aa.1994.96.3.02a00100.CrossRefGoogle Scholar
  25. Greeno, J. G. (1998). The situativity of knowing, learning, and research. American Psychologist, 53(1), 5–26. doi:10.1037/0003-066X.53.1.5.CrossRefGoogle Scholar
  26. Hashweh, M. Z. (2005). Teacher pedagogical constructions: A reconfiguration of pedagogical content knowledge. Teachers and Teaching: Theory and Practice, 11(3), 273–292.CrossRefGoogle Scholar
  27. Hattie, J. (2012). Visible learning for teachers: Maximizing impact on learning. London: Routledge.Google Scholar
  28. Hiebert, J., Gallimore, R., Garnier, H., Givven, K. B., Hollingsworth, H., Jacobs, J., et al. (2003). Teaching mathematics in seven countries: Results from the TIMSS 1999 Video Study. Washington DC: U.S. Department of Education, National Center for Education Statistics.Google Scholar
  29. Hiebert, J., Gallimore, R., & Stigler, J. W. (2002). A knowledge base for the teaching profession: What would it look like and how can we get one? Educational Researcher, 31(5), 3–15.CrossRefGoogle Scholar
  30. Kaiser, G., Busse, A., Hoth, J., König, J., & Blömeke, S. (2015). About the complexities of video-based assessments: Theoretical and methodological approaches to overcoming shortcomings of research on teachers’ competence. International Journal of Science and Mathematics Education, 13(2), 369–387. doi:10.1007/s10763-015-9616-7.CrossRefGoogle Scholar
  31. Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. The International Journal on Mathematics Education, 38(3), 302–310.Google Scholar
  32. Kersting, N., Givvin, K., Thompson, B., Santagata, R., & Stigler, J. (2012). Measuring usable knowledge teachers’ analyses of mathematics classroom videos predict teaching quality and student learning. American Educational Research Journal, 49(3), 568–589.CrossRefGoogle Scholar
  33. Kleinknecht, M., & Schneider, J. (2013). What do teachers think and how do they feel when they analyze videos of themselves teaching and of other teachers teaching? Teaching and Teacher Education, 33, 13–23.CrossRefGoogle Scholar
  34. Knievel, I., Lindmeier, A. M., & Heinze, A. (2015). Beyond knowledge: Measuring primary teachers’ subject-specific competences in and for teaching mathematics with items based on video vignettes. International Journal of Science and Mathematics Education, 13(2), 309–329.CrossRefGoogle Scholar
  35. König, J., Blömeke, S., Klein, P., Suhl, U., Busse, A., & Kaiser, G. (2014). Is teachers’ general pedagogical knowledge a premise for noticing and interpreting classroom situations? A video-based assessment approach. Teaching and Teacher Education, 38, 76–88.CrossRefGoogle Scholar
  36. Krauss, S., Baumert, J., & Blum, W. (2008a). Secondary mathematics teachers’ pedagogical content knowledge and content knowledge: Validation of the COACTIV constructs. ZDM—The International Journal on Mathematics Education, 40(5), 873–892.CrossRefGoogle Scholar
  37. Krauss, S., Blum, W., Brunner, M., Neubrand, M., Baumert, J., Kunter, M., et al. (2013). Mathematics teachers’ domain-specific professional knowledge: Conceptualization and test construction in COACTIV. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers, mathematics teacher education, 8 (pp. 147–174). New York: Springer.CrossRefGoogle Scholar
  38. Krauss, S., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand, M., et al. (2008b). Pedagogical content knowledge and content knowledge of secondary mathematics teachers. Journal of Educational Psychology, 100(3), 716–725. doi:10.1037/0022-0663.100.3.716.CrossRefGoogle Scholar
  39. Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., & Neubrand, M. (Eds.). (2013a). Cognitive activation in the mathematics classroom and professional competence of teachers. Results from the COACTIV project. New York: Springer.Google Scholar
  40. Kunter, M., Klusmann, U., Baumert, J., Richter, D., Voss, T., & Hachfeld, A. (2013b). Professional competence of teachers: Effects on instructional quality and student development. Journal of Educational Psychology, 105(3), 805–820. doi:10.1037/a0032583.CrossRefGoogle Scholar
  41. Kunter, M., & Voss, T. (2013). The model of instructional quality in COACTIV: A multicriteria analysis. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers, mathematics teacher education, 8 (pp. 97–124). New York: Springer.CrossRefGoogle Scholar
  42. Kuntze, S. (2006). Video technology in the assessment of an in-service teacher learning program. ZDM, 38(5), 413–421.CrossRefGoogle Scholar
  43. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174.CrossRefGoogle Scholar
  44. Lindmeier, A. (2011). Modeling and measuring knowledge and competencies of teachers: A threefold domain-specific structure model for mathematics. Münster: Waxmann.Google Scholar
  45. Lindmeier, A. (2013). Video-vignettenbasierte standardisierte Erhebung von Lehrerkognitionen. In U. Riegel & K. Macha (Eds.), Videobasierte Kompetenzforschung in den Fachdidaktiken (pp. 45–62). Münster: Waxmann.Google Scholar
  46. Mason, J. (2008). PCK and beyond. In P. Sullivan & T. Wood (Eds.), International handbook of mathematics teacher education (Vol. 1, pp. 301–322)., Knowledge and beliefs in mathematics teaching and teaching development Rotterdam: Sense Publishers.Google Scholar
  47. Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? American Psychologist, 59, 14–19.CrossRefGoogle Scholar
  48. Meyer, H. (1989). Plädoyer für Methodenvielfalt. Pädagogik, 1, 8–15.Google Scholar
  49. Muthén, L. K., & Muthén, B. O. (2008). Mplus (Version 5.1). Los Angeles: Muthén & Muthén.Google Scholar
  50. OECD. (2003). PISA 2003 assessment framework—mathematics, reading, science and problem solving knowledge and skills. Paris: OECD.Google Scholar
  51. Palincsar, A. S. (1998). Social constructivist perspectives on teaching and learning. Annual Review of Psychology, 49, 345–375. doi:10.1146/annurev.psych.49.1.345.CrossRefGoogle Scholar
  52. Petrou, M., & Goulding, M. (2011). Conceptualising teachers’ mathematical knowledge in teaching. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 9–25). Dordrecht: Springer.CrossRefGoogle Scholar
  53. Prenzel, M., Baumert, J., Blum, W., Lehmann, R., Leutner, D., Neubrand, M., et al. (Eds.). (2004). PISA 2003. Der Bildungsstand der Jugendlichen in Deutschland—Ergebnisse des zweiten internationalen Vergleichs. Münster: Waxmann.Google Scholar
  54. Rowland, T., & Ruthven, K. (2011). Introduction: Mathematical knowledge in teaching. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 1–5). Dordrecht: Springer.CrossRefGoogle Scholar
  55. Santagata, R., Zannoni, C., & Stigler, J. (2007). The role of lesson analysis in preservice teacher education: An empirical investigation of teacher learning from a virtual video-based field experience. Journal of Mathematics Teacher Education, 10(2), 123–140.CrossRefGoogle Scholar
  56. Schmeisser, C., Krauss, S., Bruckmaier, G., Ufer, S., & Blum, W. (2013). Transmissive and constructivist beliefs of in-service mathematics teachers and of beginning university students. In Y. Li & J. N. Moschkovich (Eds.), Proficiency and beliefs in learning and teaching mathematics. Learning from Alan Schoenfeld and Günter Törner. Mathematics teaching and learning, 3 (pp. 51–68). Rotterdam: Sense.Google Scholar
  57. Seidel, T., & Prenzel, M. (2007). Wie Lehrpersonen Unterricht wahrnehmen und einschätzen—Erfassung pädagogisch-psychologischer Kompetenzen bei Lehrpersonen mit Hilfe von Videosequenzen. Zeitschrift für Erziehungswissenschaft, Sonderheft, 8, 201–216.Google Scholar
  58. Seidel, T., & Stürmer, K. (2014). Modeling and measuring the structure of professional vision in pre-service teachers. American Educational Research Journal, 51(4), 739–771. doi:10.3102/0002831214531321.CrossRefGoogle Scholar
  59. Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just one. Educational researcher, 27(2), 4–13.CrossRefGoogle Scholar
  60. Sherin, M., Jacobs, V., & Philipp, R. (Eds.). (2011). Mathematics teacher noticing: Seeing through teachers’ eyes. New York: Routledge.Google Scholar
  61. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4–14.CrossRefGoogle Scholar
  62. Smith, J. P, I. I. I., Disessa, A. A., & Roschelle, J. (1994). Misconceptions reconceived: A constructivist analysis of knowledge in transition. The Journal of the Learning Sciences, 3(2), 115–163.CrossRefGoogle Scholar
  63. Sternberg, R. J., & Horvath, J. A. (1995). A prototype view of expert teaching. Educational Researcher, 24(6), 9–17.CrossRefGoogle Scholar
  64. Stürmer, K., & Seidel, T. (2015). Assessing professional vision in teacher candidates—approaches to validate the observer extended research tool. Zeitschrift für Psychologie, 223(1), 54–63. doi:10.1027/2151-2604/a000200.CrossRefGoogle Scholar
  65. van der Vleuten, C. (1996). The assessment of professional competence: Developments, research and practical implications. Advances in Health Sciences Education, 1, 41–67.CrossRefGoogle Scholar
  66. van Es, E. A., & Sherin, M. G. (2010). The influence of video clubs on teachers’ thinking and practice. Journal of Mathematics Teacher Education, 13(2), 155–176.CrossRefGoogle Scholar
  67. Vosniadou, S., & Verschaffel, L. (2004). Extending the conceptual change approach to mathematics learning and teaching. Special Issue of Learning and Instruction, 14(5), 445–451.CrossRefGoogle Scholar
  68. Voss, T., Kleickmann, T., Kunter, M., & Hachfeld, A. (2013). Mathematics’ teachers beliefs. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers—results from the COACTIV project. Mathematics teacher education, 8 (pp. 249–272). New York: Springer.CrossRefGoogle Scholar
  69. Wagenschein, M. (1991). Verstehen lehren. Genetisch—sokratisch—exemplarisch. Weinheim: Beltz.Google Scholar

Copyright information

© FIZ Karlsruhe 2016

Authors and Affiliations

  1. 1.University of RegensburgRegensburgGermany
  2. 2.University of KasselKasselGermany
  3. 3.Leuphana University LüneburgLüneburgGermany

Personalised recommendations