# Zig-zagging in geometrical reasoning in technological collaborative environments: a Mathematical Working Space-framed study concerning cognition and affect

- 413 Downloads
- 4 Citations

## Abstract

This study highlights the importance of cognition-affect interaction pathways in the construction of mathematical knowledge. Scientific output demands further research on the conceptual structure underlying such interaction aimed at coping with the high complexity of its interpretation. The paper discusses the effectiveness of using a dynamic model such as that outlined in the Mathematical Working Spaces (MWS) framework, in order to describe the interplay between cognition and affect in the transitions from instrumental to discursive geneses in geometrical reasoning. The results based on empirical data from a teaching experiment at a middle school show that the use of dynamic geometry software favours students’ attitudinal and volitional dimensions and helps them to maintain productive affective pathways, affording greater intellectual independence in mathematical work and interaction with the context that impact learning opportunities in geometric proofs. The reflective and heuristic dimensions of teacher mediation in students’ learning is crucial in the transition from instrumental to discursive genesis and working stability in the Instrumental-Discursive plane of MWS.

## Keywords

Geometry Mathematical Working Space GeoGebra Cognition-affect interplay Argumentation Secondary education## Notes

### Acknowledgments

This study was funded by the Spanish Ministry of the Economy and Competitive Affairs under project EDU2012-33030 entitled “Mathematics teacher trainee learning process” and by special action grant from Cátedra UCM Miguel de Guzmán (Spain) under project “Mathematical Working Space” (UCM-CmdeGuzman-2015-01).

## References

- Andrà, C. (2015). A specific language towards a new conceptual framework for networking methodologies in the field of affect. In B. Pepin & B. Rösken-Winter (Eds.), From beliefs and affect to dynamic systems in mathematics education. Exploring a mosaic of relationships and interactions (pp. 339–354). Cham, Switzerland: Springer.Google Scholar
- Arzarello, F., Bosch, M., Gascón, J., & Sabena, C. (2008). The ostensive dimension through the lenses of two didactic approaches.
*ZDM-The International Journal on Mathematics Education,**40*(2), 179–188.CrossRefGoogle Scholar - Balacheff, N. (1987). Processus de preuve et situations de validation.
*Educational Studies in Mathematics,**18*, 147–176.CrossRefGoogle Scholar - Balacheff, N. (2000).
*Procesos de prueba en los alumnos de matemáticas*. Bogota: Una empresa docente, Universidad de los Andes.Google Scholar - Coutat, S., & Richard, P. (2011). Les figures dynamiques dans un espace de travail mathématique pour l’apprentissage des propriétés géométriques.
*Annales de Didactique et de Sciences Cognitives,**16*, 97–126.Google Scholar - De la Torre, E., & Pérez, M. (2008). Paradigmas y espacios de trabajo geométricos en los libros de texto de la ESO. In G. Luengo, B. Gómez, M. Camacho, & L. J. Blanco (Eds.),
*Investigación en educación matemática XII, actas del XII simposio de la Sociedad Española de Investigación en Educación Matemática*(Vol. 1). Badajoz: Sociedad Española de Investigación Matemática.Google Scholar - DeBellis, V. A., & Goldin, G. A. (2006). Affect and meta-affect in mathematical problem solving: a representational perspective.
*Educational Studies in Mathematics,**63*(2), 131–147. doi: 10.1007/s10649-006-9026-4.CrossRefGoogle Scholar - Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie: développement de la visualisation, différenciation des raisonnements et coordination de leur fonctionnements.
*Annales de Didactique et de Sciences Cognitives,**10*, 5–53.Google Scholar - Evans, J. (2000).
*Adults’ Mathematical thinking and emotions*. London: Falmer Press.Google Scholar - García, M. M. (2011). Evolución de actitudes y competencias matemáticas en estudiantes de secundaria al introducir GeoGebra en el aula. Resource document. Funes. http://funes.uniandes.edu.co/1768/. Accessed 14 May 2015.
- Goldin, G. A. (2000). Affective pathways and representation in mathematical problem solving.
*Mathematical Thinking and Learning,**2*(3), 209–219. doi: 10.1207/S15327833MTL0203_3.CrossRefGoogle Scholar - Goldin, G. A. (2004). Problem Solving heuristics, affect and discrete mathematics.
*ZDM,**36*(2), 56–60. doi: 10.1007/BF02655759.CrossRefGoogle Scholar - Goldin, G. A., & Kaput, J. J. (1996). A joint perspective ono the idea of representation in learning, and doing mathematics. In L. Steffe, P. Nesher, P. Cobb, G. A. Goldin, & B. Greer (Eds.),
*Theories of mathematical learning*(pp. 397–430). Mahwah: Lawrence Erlbaum Associates.Google Scholar - Gómez-Chacón, I. M. (2000). Affective influences in the knowledge of mathematics.
*Educational Studies in Mathematics,**43*, 149–168. doi: 10.1023/A:1017518812079.CrossRefGoogle Scholar - Gómez-Chacón, I. Mª (2011). Mathematics attitudes in computerized environments. A proposal using GeoGebra. In L. Bu & R. Schoen (Eds.), Model-centered learning: Pathways to mathematical understanding using GeoGebra (pp. 147–170). Rotterdam: Sense Publishers.Google Scholar
- Gómez-Chacón, I. M. (2012). Affective pathways and interactive visualization in the context of technological and professional mathematical knowledge.
*Nordic Studies in Mathematics Education,**17*(3–4), 57–74.Google Scholar - Gómez-Chacón, I. M. (2015). Meta-emotion and mathematical modeling processes in computerized environments. In B. Pepin & B. Rösken-Winter (Eds.), From beliefs and affect to dynamic systems in mathematics education. Exploring a mosaic of relationships and interactions (pp. 201–226). Switzerland: Springer.Google Scholar
- Gómez-Chacón, I. M., & Kuzniak, A. (2013). Geometric Work Spaces: figural, instrumental and discursive geneses of reasoning in a technological environment.
*ZDM-International Journal of Science and Mathematics Education,**13*(1), 201–226. doi: 10.1007/s10763-013-9462-4.Google Scholar - Gutiérrez, A. (2005). Aspectos de investigación sobre aprendizaje mediante exploración con tecnología. In A. Maz, B. Gómez, & M. Torralbo (Eds.),
*Investigación en educación matemática*(pp. 27–44). Córdoba: Publicaciones de la Universidad de Córdoba, SEIEM.Google Scholar - Hannula, M. S. (2011). The structure and dynamics of affect in mathematical thinking and learning. In M. Pylak, E. Swoboda, & T. Rowland (Eds.),
*Proceedings of the CERME7*(pp. 34–60). Reswo: University of Reszow, CERME.Google Scholar - Hernandez, R., & Gómez-Chacón, I. Mª. (1997). Las actitudes en educación matemática. Estrategias para el cambio.
*Revista de Didáctica de las matemáticas, UNO, Monográfico Actitudes y Matemáticas,**13*, 41–61.Google Scholar - Kuzniak, A. (2010). Un essai sur la nature du travail géométrique en fin de la scolarité obligatoire en France.
*Annales de Didactique et de Sciences Cognitives,**15*, 75–96.Google Scholar - Kuzniak, A. (2011). L’espace de Travail Mathématique et ses genèses.
*Annales de Didactique et de Sciences Cognitives,**16*, 9–24.Google Scholar - Kuzniak, A., & Rauscher, J.-C. (2011). How do teachers’ approaches to geometric work relate to geometry students’ learning difficulties?
*Educational Studies in Mathematics,**77*, 129–147.CrossRefGoogle Scholar - Lakatos, I. (1976).
*Proofs and refutations: the logic of mathematical discovery*. New York: Cambridge University Press.CrossRefGoogle Scholar - McCulloch, A. W. (2011). Affect and graphing calculator use.
*Journal of Mathematical Behavior,**30*(2), 166–179. doi: 10.1016/j.jmathb.2011.02.002.CrossRefGoogle Scholar - McLeod, D. B., & Adams, V. M. (Eds.). (1989).
*Affect and mathematical problem solving: A new perspective*. New York: Springer-Verlag.Google Scholar - Pepin, B., & Rösken-Winter, B. (Eds.). (2015).
*From beliefs and affect to dynamic systems in mathematics education. Exploring a mosaic of relationships and interactions*. Switzerland: Springer.Google Scholar - Piaget, J. (1981).
*Intelligence and affectivity: their relationship during child development*. Palo Alto: Annual Reviews.Google Scholar - Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). How can networking strategies for connecting theoretical approaches help to develop theories in mathematics education?
*ZDM-The International Journal on Mathematics Education,**40*(2), 165–178.CrossRefGoogle Scholar - Rabardel, P., & Béguin, P. (2005). Instrument mediated activity: from subject development to anthropocentric design.
*Theoretical Issues in Ergonomics Sciences,**6*(5), 429–461.CrossRefGoogle Scholar - Rabardel, P., & Bourmaud, G. (2003). From computer to instrument system: a developmental perspective.
*Interacting with Computers,**15*, 665–691.CrossRefGoogle Scholar - Radford, L. (2008). Connecting theories in mathematics education: challenge and possibilities.
*ZDM-The International Journal on Mathematics Education,**40*(2), 317–327.CrossRefGoogle Scholar - Romero, I. M., García, M. M., & Codina, A. (2015). Developing mathematical competencies in secondary students by introducing dynamic geometry systems in the classroom.
*Education and Science,**40*(177), 43–58. doi: 10.15390/EB.2015.2640.Google Scholar - Schlöglmann, W. (2005). Affect and cognition—Two poles of a learning process. In C. Bergsten & B. Grevholm (Eds.), Conceptions of mathematics. Proceedings of Norma 01, (pp. 215–222). Linköping: Svensk Förening för Matematikdidaktisk Forskning.Google Scholar
- Tanguay, D. (2005). Apprentissage de la démonstration et graphes orientés.
*Annales de Didactique et de Sciences Cognitives,**10*, 55–93.Google Scholar - Tanguay, D., & Geeraerts, L. (2012). D’une géométrie du perceptible à une géométrie déductive : à la recherche du paradigme manquant.
*Petit x,**88*, 5–24.Google Scholar