ZDM

, Volume 48, Issue 6, pp 909–924 | Cite as

Zig-zagging in geometrical reasoning in technological collaborative environments: a Mathematical Working Space-framed study concerning cognition and affect

  • Inés Mª. Gómez-Chacón
  • Isabel Mª. Romero Albaladejo
  • Mª. del Mar García López
Original Article

Abstract

This study highlights the importance of cognition-affect interaction pathways in the construction of mathematical knowledge. Scientific output demands further research on the conceptual structure underlying such interaction aimed at coping with the high complexity of its interpretation. The paper discusses the effectiveness of using a dynamic model such as that outlined in the Mathematical Working Spaces (MWS) framework, in order to describe the interplay between cognition and affect in the transitions from instrumental to discursive geneses in geometrical reasoning. The results based on empirical data from a teaching experiment at a middle school show that the use of dynamic geometry software favours students’ attitudinal and volitional dimensions and helps them to maintain productive affective pathways, affording greater intellectual independence in mathematical work and interaction with the context that impact learning opportunities in geometric proofs. The reflective and heuristic dimensions of teacher mediation in students’ learning is crucial in the transition from instrumental to discursive genesis and working stability in the Instrumental-Discursive plane of MWS.

Keywords

Geometry Mathematical Working Space GeoGebra Cognition-affect interplay Argumentation Secondary education 

References

  1. Andrà, C. (2015). A specific language towards a new conceptual framework for networking methodologies in the field of affect. In B. Pepin & B. Rösken-Winter (Eds.), From beliefs and affect to dynamic systems in mathematics education. Exploring a mosaic of relationships and interactions (pp. 339–354). Cham, Switzerland: Springer.Google Scholar
  2. Arzarello, F., Bosch, M., Gascón, J., & Sabena, C. (2008). The ostensive dimension through the lenses of two didactic approaches. ZDM-The International Journal on Mathematics Education, 40(2), 179–188.CrossRefGoogle Scholar
  3. Balacheff, N. (1987). Processus de preuve et situations de validation. Educational Studies in Mathematics, 18, 147–176.CrossRefGoogle Scholar
  4. Balacheff, N. (2000). Procesos de prueba en los alumnos de matemáticas. Bogota: Una empresa docente, Universidad de los Andes.Google Scholar
  5. Coutat, S., & Richard, P. (2011). Les figures dynamiques dans un espace de travail mathématique pour l’apprentissage des propriétés géométriques. Annales de Didactique et de Sciences Cognitives, 16, 97–126.Google Scholar
  6. De la Torre, E., & Pérez, M. (2008). Paradigmas y espacios de trabajo geométricos en los libros de texto de la ESO. In G. Luengo, B. Gómez, M. Camacho, & L. J. Blanco (Eds.), Investigación en educación matemática XII, actas del XII simposio de la Sociedad Española de Investigación en Educación Matemática (Vol. 1). Badajoz: Sociedad Española de Investigación Matemática.Google Scholar
  7. DeBellis, V. A., & Goldin, G. A. (2006). Affect and meta-affect in mathematical problem solving: a representational perspective. Educational Studies in Mathematics, 63(2), 131–147. doi:10.1007/s10649-006-9026-4.CrossRefGoogle Scholar
  8. Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie: développement de la visualisation, différenciation des raisonnements et coordination de leur fonctionnements. Annales de Didactique et de Sciences Cognitives, 10, 5–53.Google Scholar
  9. Evans, J. (2000). Adults’ Mathematical thinking and emotions. London: Falmer Press.Google Scholar
  10. García, M. M. (2011). Evolución de actitudes y competencias matemáticas en estudiantes de secundaria al introducir GeoGebra en el aula. Resource document. Funes. http://funes.uniandes.edu.co/1768/. Accessed 14 May 2015.
  11. Goldin, G. A. (2000). Affective pathways and representation in mathematical problem solving. Mathematical Thinking and Learning, 2(3), 209–219. doi:10.1207/S15327833MTL0203_3.CrossRefGoogle Scholar
  12. Goldin, G. A. (2004). Problem Solving heuristics, affect and discrete mathematics. ZDM, 36(2), 56–60. doi:10.1007/BF02655759.CrossRefGoogle Scholar
  13. Goldin, G. A., & Kaput, J. J. (1996). A joint perspective ono the idea of representation in learning, and doing mathematics. In L. Steffe, P. Nesher, P. Cobb, G. A. Goldin, & B. Greer (Eds.), Theories of mathematical learning (pp. 397–430). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  14. Gómez-Chacón, I. M. (2000). Affective influences in the knowledge of mathematics. Educational Studies in Mathematics, 43, 149–168. doi:10.1023/A:1017518812079.CrossRefGoogle Scholar
  15. Gómez-Chacón, I. Mª (2011). Mathematics attitudes in computerized environments. A proposal using GeoGebra. In L. Bu & R. Schoen (Eds.), Model-centered learning: Pathways to mathematical understanding using GeoGebra (pp. 147–170). Rotterdam: Sense Publishers.Google Scholar
  16. Gómez-Chacón, I. M. (2012). Affective pathways and interactive visualization in the context of technological and professional mathematical knowledge. Nordic Studies in Mathematics Education, 17(3–4), 57–74.Google Scholar
  17. Gómez-Chacón, I. M. (2015). Meta-emotion and mathematical modeling processes in computerized environments. In B. Pepin & B. Rösken-Winter (Eds.), From beliefs and affect to dynamic systems in mathematics education. Exploring a mosaic of relationships and interactions (pp. 201–226). Switzerland: Springer.Google Scholar
  18. Gómez-Chacón, I. M., & Kuzniak, A. (2013). Geometric Work Spaces: figural, instrumental and discursive geneses of reasoning in a technological environment. ZDM-International Journal of Science and Mathematics Education, 13(1), 201–226. doi:10.1007/s10763-013-9462-4.Google Scholar
  19. Gutiérrez, A. (2005). Aspectos de investigación sobre aprendizaje mediante exploración con tecnología. In A. Maz, B. Gómez, & M. Torralbo (Eds.), Investigación en educación matemática (pp. 27–44). Córdoba: Publicaciones de la Universidad de Córdoba, SEIEM.Google Scholar
  20. Hannula, M. S. (2011). The structure and dynamics of affect in mathematical thinking and learning. In M. Pylak, E. Swoboda, & T. Rowland (Eds.), Proceedings of the CERME7 (pp. 34–60). Reswo: University of Reszow, CERME.Google Scholar
  21. Hernandez, R., & Gómez-Chacón, I. Mª. (1997). Las actitudes en educación matemática. Estrategias para el cambio. Revista de Didáctica de las matemáticas, UNO, Monográfico Actitudes y Matemáticas, 13, 41–61.Google Scholar
  22. Kuzniak, A. (2010). Un essai sur la nature du travail géométrique en fin de la scolarité obligatoire en France. Annales de Didactique et de Sciences Cognitives, 15, 75–96.Google Scholar
  23. Kuzniak, A. (2011). L’espace de Travail Mathématique et ses genèses. Annales de Didactique et de Sciences Cognitives, 16, 9–24.Google Scholar
  24. Kuzniak, A., & Rauscher, J.-C. (2011). How do teachers’ approaches to geometric work relate to geometry students’ learning difficulties? Educational Studies in Mathematics, 77, 129–147.CrossRefGoogle Scholar
  25. Lakatos, I. (1976). Proofs and refutations: the logic of mathematical discovery. New York: Cambridge University Press.CrossRefGoogle Scholar
  26. McCulloch, A. W. (2011). Affect and graphing calculator use. Journal of Mathematical Behavior, 30(2), 166–179. doi:10.1016/j.jmathb.2011.02.002.CrossRefGoogle Scholar
  27. McLeod, D. B., & Adams, V. M. (Eds.). (1989). Affect and mathematical problem solving: A new perspective. New York: Springer-Verlag.Google Scholar
  28. Pepin, B., & Rösken-Winter, B. (Eds.). (2015). From beliefs and affect to dynamic systems in mathematics education. Exploring a mosaic of relationships and interactions. Switzerland: Springer.Google Scholar
  29. Piaget, J. (1981). Intelligence and affectivity: their relationship during child development. Palo Alto: Annual Reviews.Google Scholar
  30. Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). How can networking strategies for connecting theoretical approaches help to develop theories in mathematics education? ZDM-The International Journal on Mathematics Education, 40(2), 165–178.CrossRefGoogle Scholar
  31. Rabardel, P., & Béguin, P. (2005). Instrument mediated activity: from subject development to anthropocentric design. Theoretical Issues in Ergonomics Sciences, 6(5), 429–461.CrossRefGoogle Scholar
  32. Rabardel, P., & Bourmaud, G. (2003). From computer to instrument system: a developmental perspective. Interacting with Computers, 15, 665–691.CrossRefGoogle Scholar
  33. Radford, L. (2008). Connecting theories in mathematics education: challenge and possibilities. ZDM-The International Journal on Mathematics Education, 40(2), 317–327.CrossRefGoogle Scholar
  34. Romero, I. M., García, M. M., & Codina, A. (2015). Developing mathematical competencies in secondary students by introducing dynamic geometry systems in the classroom. Education and Science, 40(177), 43–58. doi:10.15390/EB.2015.2640.Google Scholar
  35. Schlöglmann, W. (2005). Affect and cognition—Two poles of a learning process. In C. Bergsten & B. Grevholm (Eds.), Conceptions of mathematics. Proceedings of Norma 01, (pp. 215–222). Linköping: Svensk Förening för Matematikdidaktisk Forskning.Google Scholar
  36. Tanguay, D. (2005). Apprentissage de la démonstration et graphes orientés. Annales de Didactique et de Sciences Cognitives, 10, 55–93.Google Scholar
  37. Tanguay, D., & Geeraerts, L. (2012). D’une géométrie du perceptible à une géométrie déductive : à la recherche du paradigme manquant. Petit x, 88, 5–24.Google Scholar

Copyright information

© FIZ Karlsruhe 2016

Authors and Affiliations

  • Inés Mª. Gómez-Chacón
    • 1
  • Isabel Mª. Romero Albaladejo
    • 2
  • Mª. del Mar García López
    • 2
  1. 1.Facultad de Ciencias Matemáticas e Instituto de Matemática InterdisciplinarUniversidad Complutense de MadridMadridSpain
  2. 2.Universidad de AlmeríaAlmeríaSpain

Personalised recommendations