Skip to main content

Advertisement

Log in

Truth versus validity in mathematical proof

  • Original article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

In mathematics education, it is often said that mathematical statements are necessarily either true or false. It is also well known that this idea presents a great deal of difficulty for many students. Many authors as well as researchers in psychology and mathematics education emphasize the difference between common sense and mathematical logic. In this paper, we provide both epistemological and didactic arguments to reconsider this point of view, taking into account the distinction made in logic between truth and validity on one hand, and syntax and semantics on the other. In the first part, we provide epistemological arguments showing that a central concern for logicians working with a semantic approach has been finding an appropriate distance between common sense and their formal systems. In the second part, we turn from these epistemological considerations to a didactic analysis. Supported by empirical results, we argue for the relevance of the distinction and the relationship between truth and validity in mathematical proof for mathematics education.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In logic, a proposition is a linguistic entity that is either true or false.

  2. A syllogism has two premises and a conclusion; each premise is a proposition with a subject term and a predicate term (an attribute); the middle term occurs twice in the premises. It does not occur in the conclusion. Its position determines four figures. For example, in the first figure, the middle term is once the predicate, once the subject; in the second figure, it is twice the predicate.

  3. A very clear presentation of Aristotle’s Syllogistic can be found in Lukasiewicz (1951), who presents this text as an introduction to formal logic.

  4. English translation “On the scientific justification of a conceptual notation” in Frege 1972, pp. 83–90.

  5. The question of knowing which is the right notion of implication is discussed in (Durand-Guerrier 2003).

  6. There are obviously many others philosophical matters raised in this treatise. Here, I propose a reading based on a purely didactic perspective (Durand-Guerrier 2006).

  7. A contradiction take the truth-value “false” for every distribution.

  8. This is developed in (Durand-Guerrier 2006).

  9. In French, this expression means that you do something in order to solve a specific problem.

  10. see Sect. 2.1.

  11. http://www.mathkang.org/concours/kangsansf.html.

  12. The method of Copi (1954) is briefly described in the Appendix.

  13. This example is developed in (Durand-Guerrier 2005, pp. 128–139). Notice that we use “general statements,” where Jahnke (2008) use “closed general statements.”

  14. This example is developed in French in (Durand-Guerrier and Arsac 2003); in English in (Durand-Guerrier and Arsac 2005) and in (Durand-Guerrier 2004).

  15. For a polynomial with power one, the derivative is a constant; for a polynomial with power two, we have 2c = b + a.

  16. For functions x 2 and x 3 on the interval [0;1], the number c must be \( \frac{1}{2} \) and \( \sqrt {\frac{1}{3}}, \) respectively.

  17. Our translation.

  18. On this question, see also Epp (2003).

References

  • Aristote. (1989). Organon: I. Catégories-II De l’interprétation, Traduction nouvelle et notes par Jean Tricot, Librairie philosophique J. Vrin.

  • Aristote. (1992) Organon: III. Premiers analytiques, traduction Jean Tricot, Librairie philosophique J. Vrin.

  • Arsac, G. (1987). L’origine de la démonstration: essai d’épistémologie didactique. Recherches en Didactique des Mathématiques, 8/3, 267–312.

    Google Scholar 

  • Arsac, G., Chapiron, G., Colonna, A., Germain, G., Guichard, Y., & Mante, M. (1992). Initiation au raisonnement déductif au collège. Presses Universitaires de Lyon: I.R.E.M. de Lyon.

  • Artigue, M. (1991) Epistémologie et Didactique. Recherches en Didactique des Mathématiques, 10/2.3, 241–285.

  • Chellougui, F. (2003). Approche didactique de la quantification dans la classe de mathématiques dans l’enseignement tunisien. Petit X, 61, 11–34.

    Google Scholar 

  • Copi, I. (1954). Symbolic logic (2nd edition, 1965). New York: The Macmillan Company.

    Google Scholar 

  • Dorier, J. L. (2000) Recherches en Histoire et en Didactique des Mathématiques sur l’algèbre linéaire. Perspective théorique sur leurs interactions. les cahiers du laboratoire Leibniz no. 12, http://www.leibniz-imag.frLesCahiers.

  • Dubinsky, E., & Yiparaki, O. (2000). On students understanding of AE and EA quantification. Research in Collegiate Mathematics Education IV. CBMS Issues in Mathematics Education, 8, 239–289. American Mathematical Society, Providence.

    Google Scholar 

  • Durand-Guerrier, V. (2006). Lire le Tractatus dans une perspective didactique, in Ouelbani, M. (dir.) Thèmes de philosophie analytique, Université de Tunis, faculté des Sciences humaines et sociales

  • Durand-Guerrier, V. (2005). Recherches sur l’articulation entre la logique et le raisonnement mathématique dans une perspective didactique. Un cas exemplaire de l’interaction entre analyses épistémologique et didactique. Apports de la théorie élémentaire des modèles pour une analyse didactique du raisonnement mathématique, Note de synthèse pour l’habilitation à Diriger les Recherches (HDR), Université Lyon 1, I.R.E.M. de Lyon

  • Durand-Guerrier, V. (2004) Logic and mathematical reasoning from a didactical point of view. A model-theoretic approach. In Electronic proceedings of the third conference of the European Society for Research in Mathematics Education, February 28–March 3, 2003, Bellaria, Italia.

  • Durand-Guerrier, V. (2003). Which notion of implication is the right one? From logical considerations to a didactic perspective. Educational Studies in Mathematics, 53, 5–34.

    Article  Google Scholar 

  • Durand-Guerrier, V., & Arsac, G. (2003). Méthodes de raisonnement et leurs modélisations logiques? Le cas de l’analyse. Quelles implications didactiques. Recherches en Didactique des Mathématiques, 23/3, 295–342.

    Google Scholar 

  • Durand-Guerrier, V., & Arsac, G. (2005). An epistemological and didactic study of a specific calculus reasoning rule. Educational Studies in Mathematics, 60/2, 149–172.

    Article  Google Scholar 

  • Durand-Guerrier, V., & Ben Kilani, I. (2004). Négation grammaticale versus négation logique dans l’apprentissage des mathématiques. Exemple dans l’enseignement secondaire Tunisien. Les Cahiers du Français Contemporain, 9, 29–55.

    Google Scholar 

  • Engel, P. (1989). La norme du vrai Philosophie de la logique. Paris: Gallimard.

  • Epp, S. (2003). The role of logic in teaching proof. American Mathematical Monthly (110)10, December 2003, pp. 886–899.

  • Frege, G. (1882). Über die wissenschaftliche Berechtigung einer Begriffsschrift. Zeitschrift für Philosophie und Philosophische Kritik, 81, 48–56. French translation in Frege (1971), pp. 63–69.

  • Frege, G. (1918a). Der Gedanke. Eine logische Untersuchung. Beiträge zur Philosophie des Deutschen Idealismus, 1, 58–77. French translation in Frege (1971).

  • Frege, G. (1918b). Die verneinung. Eine logische Untersuchung. Beiträge zur Philosophie des Deutschen Idealismus, 1, 143–157. French translation in Frege (1971).

    Google Scholar 

  • Frege, G. (1923). Logische Untersuchungen. Beiträge zur Philosophie des Deutschen Idealismus, 3, 36–51. French translation in Frege (1971); English translation in Frege (1972), pp. 83–90.

  • Frege, G. (1971). Ecrits logiques et philosophiques. Paris: Le Seuil.

    Google Scholar 

  • Frege, G. (1972). Conceptual notation and related articles. Oxford: Clarendon Press.

    Google Scholar 

  • Fuchs, C. (1996). Les ambiguïtés du français, Collection l’essentiel français Ophrys.

  • Gentzen, G. (1935). Untersuchungen über das logische Schliessen. Math Zeitschr, 39, 176–210, 405–431. French translation in Gentzen (1995)

  • Gentzen, G. (1955) Recherches sur la déduction logique (translated by R. Feys and J. Ladriere). Paris: PUF.

  • Glaeser, G. (1973). Mathématiques pour l’élève professeur. Paris: Hermann.

    Google Scholar 

  • Granger, G. G. (1990). Invitation à la lecture de Wittgenstein. Aix en Provence: Alinea.

    Google Scholar 

  • Hanna, G. (2000). Proof, explanation and exploration, an overview. Educational Studies in Mathematics, 44, 5–23.

    Article  Google Scholar 

  • Houzel, C. (1996). Analyse mathématique. Cours et exercices. Paris: Belin.

    Google Scholar 

  • Hoyles, C., & Küchemann, D. (2003). Students’understandings of logical implication. Educational Studies in Mathematics, 51(3/2), 193–223.

    Google Scholar 

  • Inglis, M., & Simpson, A. (2006). The role of mathematical context in evaluating conditionnal statements. In Proceedings of the 30th conference of international group for the psychology of mathematics education, Vol. 3 (pp. 337–344), Prague, 17–21 July 2006.

  • Jahnke, N. (2008). Theorems that admit exceptions, including a remark on Toulmin. ZDM—The International Journal on Mathematics Education, this issue.

  • Johnson-Laird, P. N. (1986). Reasoning without logic. In T. Meyers, K. Brown & B. McGonigle (Eds.), Reasoning and discourse processes (pp. 14–49). London: Academic Press.

    Google Scholar 

  • Largeault, J. (1972). Logique mathématique, textes. Paris: Armand Colin.

    Google Scholar 

  • Legrand, M. (1993). Débat scientifique en cours de mathématique et spécificité de l’analyse. Repères no. 10, pp. 123–158

    Google Scholar 

  • Lukasiewicz, J. (1951). Aristotle’s syllogistic from the standpoint of modern formal logic. Oxford: Oxford University Press.

  • Lukasiewicz, J. (1972). La sylogistique d’Aristote (translated by F. Zaslaswski). Paris: Armand Colin.

  • Politzer, G. (1991). L’informativité des énoncés: contraintes sur le jugement et le raisonnement. Intellectica, 11, 111–147.

    Google Scholar 

  • Prawitz, D. (1965). Natural deduction, a proof theoretical study. Stockholm: Almqvist and Wiksell.

    Google Scholar 

  • Quine, W. V. O. (1950). Methods of logic. New York: Holy, Rinehart & Winston.

    Google Scholar 

  • Radford, L. (1985) Interprétations d’énoncés implicatifs et traitement logiques Contribution à la faisabilité d’un enseignement de la logique au lycée. Thèse de l’université de Strasbourg.

  • Rogalski, J., & Rogalski, M. (2004). Contribution à l’étude des modes de traitement de la validité de l’implication par de futurs enseignants de mathématiques. In Annales de Didactique et de Sciences Cognitives, Vol. 9 (pp. 175–203), Actes du colloque Argentoratum de juillet 2002.

  • Russell, B. (1903). Les principes de la mathématique, traduction française, in RUSSEL, Ecrits de logique philosophique. PUF: Paris 1989.

  • Selden, A., & Selden, J. (1995). Unpacking the logic of mathematical statements. Educational Studies in Mathematics, 29, 123–151.

    Article  Google Scholar 

  • Sierpinska, A., & Lerman, S. (1996). Epistemologies of mathematics and of mathematics education. In A. Bishop, K. Clements, C. Keitel, J. Kilpatrick, C. Laborde (Eds.), International handbook of mathematics education (pp. 827–876). Dordrecht: Kluwer.

  • Sinaceur, H. (1991). Corps et Modèles. Paris: Vrin.

    Google Scholar 

  • Sinaceur, H. (2001). Alfred Tarski, semantic shift, heuristic shift in metamathematics. Synthese, 126, 49–65.

    Article  Google Scholar 

  • Tarski, A. (1933a). The concept of truth in the language of deductive sciences. English translation in Tarski (1983), pp. 152–278.

  • Tarski, A. (1933b) Le concept de vérité dans les langages formalisés. French translation in Tarski (1972), pp. 157–269.

  • Tarski, A. (1936a). Introduction to logic and to the methodology of deductive sciences. French translation in Tarski (1969).

  • Tarski, A. (1936b). Introduction to logic and to the methodology of deductive sciences (4th edition, 1994). New York: Oxford University Press.

  • Tarski, A. (1936c). Sur le concept de conséquence. Logique, Sémantique et Métamathématique, 1, 141–152. Armand Colin, 1972.

  • Tarski, A. (1944a). The semantic conception of truth. Philosophy and Phenomenological Research, 4, 13–47.

    Article  Google Scholar 

  • Tarski, A. (1944). La conception sémantique de la vérité et les fondements de la sémantique. French translation in Logique, sémantique et métamathématique, Vol. 2 (pp. 265–305). Paris: Armand Colin, 1972.

  • Tarski, A. (1969). Introduction à la logique. Paris-Louvain: Gauthier-Villard.

    Google Scholar 

  • Tarski, A. (1972). Logique, sémantique et métamathématique, Vol. 1. Paris: Armand Colin.

  • Tarski, A. (1974). Logique, sémantique et métamathématique, Vol. 2. Paris: Armand Colin.

  • Tarski, A. (1983). Logic, semantics, metamathematics, papers from 1923 to 1938. Indianapolis: John Corcoran.

    Google Scholar 

  • Wason, P. C., & Johnson-Laird, P.·N. (1977). A theoretical analysis of insight into a reasoning task. In P. N. Johnson-Laird, & P. C. Wason (Eds.), Thinking: readings in cognitive science, (pp. 143–157). Open University. Cited in Richard (1990).

  • Wittgenstein, L. (1921). Tractatus logico-philosophicus. Annalen der Naturphilosophie, Leipzig. French translation in Wittgenstein (1993); English translation in London: Routledge &Kegan Paul Ltd, 1922, 1961.

  • Wittgenstein, L. (1922). Tractatus Logico-Philosophicus. C. K. Ogden Trans. London: Kegan Paul. D. F. Pears and B. F. McGuinnes, trans. London Routledge (1961).

  • Wittgenstein, L. (1993). Tractatus logico-philosophicus, traduction française G. G. Granger. Paris: Gallimard.

Download references

Acknowledgments

We wish to thank the reviewers for their advice and Jonathan Simon for reading over our paper and improving our English. Of course, we keep the entire responsibility for what is written in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviane Durand-Guerrier.

Appendix

Appendix

1.1 Natural deduction in predicate calculus

Natural deduction systems provide a theoretical framework that reflects quite well the way that mathematicians reason. These systems provide rules for the elimination and introduction of connectors and quantifiers. The first such system was due to Gentzen (1935, 1955), but it has since been modified by both Quine (1950) and Copi (1954). According to Prawitz (1965) “Because of their close correspondence to procedures common in informal reasoning, systems of natural deduction have often been used in textbooks for pedagogical purposes.” (ibid. p. 103). Besides classical rules for the introduction and elimination of propositional connectors, we find four rules for the elimination and introduction of quantifiers in one-place predicate formulae, accompanied by two restriction rules (Copi 1954, 2nd edition, 1965, pp. 79–83). In the way that logicians generally do, Copi uses a horizontal line between two statements to indicate a deduction (see Fig. 1). Besides these four rules and their two restrictions, in case of two-place (or more) predicate, it is necessary to introduce a third restriction rule: U.G. can be applied provided that fa contains no individual symbol introduced by E.I. (Copi 1954, 2nd edition, 1965, p. 112). As a consequence, if w has been introduced by applying E.I. after a was introduced by applying U.I., then U.G. cannot be applied to faw; it is necessary first to apply E.G. By combining the introduction and elimination of connectors and quantifiers, Copi’s system provides rules that on one hand allow local control of validity by analyzing deduction step by step, and on the other hand, indicate, by paying attention to change in logical status for letters, when global control of validity is required.

Fig. 1
figure 1

The four rules for the introduction and elimination of quantifiers (according to Copi 1954, 2nd edition, 1965, pp. 80–82)

A more detailed presentation of this framework and an example of the way we use it are developed in (Durand-Guerrier 2005, pp. 163–168).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durand-Guerrier, V. Truth versus validity in mathematical proof. ZDM Mathematics Education 40, 373–384 (2008). https://doi.org/10.1007/s11858-008-0098-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-008-0098-8

Keywords

Navigation