Skip to main content
Log in

A method for revealing structures of argumentations in classroom proving processes

  • Original article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

Proving processes in classrooms follow their own peculiar rationale. Reconstructing structures of argumentations in these processes reveals elements of this rationale. This article provides theoretical and methodological tools to reconstruct argumentation structures in proving processes and to shed light to their rationale. Toulmin’s functional model of argumentation is used for reconstructing local arguments, and it is extended to provide a ‘global’ model of argumentation for reconstructing proving processes in the classroom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. For an overview of these studies see as well Harel & Sowder 1998 or Hanna 2000.

  2. A deictic term is an expression, for example a pronoun, that gets its meaning from its context. The meaning of “this” depends on what is being pointed to. The meaning of “I” depends on who is speaking.

References

  • Balacheff, N. (1988). Une Étude des Processus de Preuve en Mathématique chez les Élèves de Collège. Grenoble: Université Joseph Fourier.

    Google Scholar 

  • Balacheff, N. (1987). Processus de preuve et situations de validation. Educ Stud Math, 18(2), 147–176.

    Article  Google Scholar 

  • Balacheff, N. (1991). The benefits and limits of social interaction: The case of mathematical proof. In A. J. Bishop, E. Mellin-Olsen, & J. van Dormolen (Eds.), Mathematical knowledge: Its growth through teaching (pp. 175–192). Dordrecht: Kluwer.

    Google Scholar 

  • Bartolini Bussi, M. (1998). Joint activity in mathematics classrooms: A Vygotskian analysis. In F. Seeger, J. Voigt, & U. Waschescio (Eds.), The culture of the mathematics classroom (pp. 13–49). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bauersfeld, H., Krummheuer, G., & Voigt, J. (1988). Interactional theory of learning and teaching mathematics and related microethnographical studies. In H. G. Steiner, A. Vermandel (Eds.), Foundations and methodology of the discipline of mathematics education (pp. 174–188). Antwerp: Proceedings of the TME Conference

  • Chazan, D. (1993). High school geometry student’s justification for their views of empirical evidence and mathematical. Proof. Educ Stud Math, 24(4), 359–387.

    Article  Google Scholar 

  • Cobb, P. (1989). Experiential, cognitive, and anthropological perspectives in mathematics education. Learn Math, 9(2), 32–42.

    Google Scholar 

  • Duval, R. (1995). Sémiosis et pensée humaine. Registres sémiotiques et apprentissages intellectuels. Bern: Peter Lang.

    Google Scholar 

  • Fischbein, E. (1993). The theory of figural concepts. Educ Stud Math, 24(2), 139–162.

    Article  Google Scholar 

  • Garuti R., Boero P., & Lemut E. (1998) Cognitive Unity of theorems and difficulty of proof. In A. Olivier, K. Newstead (Eds.), Proceedings of the 22nd Conference of the International Group for the Psychology of Mathematics Education (vol. 2, pp. 345–352). Stellenbosch: University of Stellenbosch.

  • Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: strategies for qualitative research. Chicago: Aldine.

    Google Scholar 

  • Hanna, G. (2000). Proof, explanation and exploration: an overview. Educ Stud Math, 44(1&2), 5–23.

    Article  Google Scholar 

  • Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In A. H. Schoenfeld, J. Kaput, E. Dubinsky (Eds.), CBMS issues in mathematics education (vol. 3, pp. 234–283). Providence, RI: American Mathematical Society.

  • Healy, L., & Hoyles, C. (1998). Justifying and proving in school mathematics Technical Report on the Nationwide Survey.. London: Institute of Education, University of London.

    Google Scholar 

  • Herbst, P. G. (1998). What works as proof in the mathematics class. Athens, GA: The University of Georgia.

    Google Scholar 

  • Herbst, P. G. (2002a). Engaging students in proving: a double bind on the teacher. J Res Math Educ, 33(3), 76–203.

    Article  Google Scholar 

  • Herbst, P. G. (2002b). Establishing a custom of proving in American school geometry: evolution of the two-column proof in the early twentieth century. Educ Stud Math, 49(3), 283–312.

    Article  Google Scholar 

  • Hoyles, C. (1997). The curricular shaping of students’ approaches to proof. Learn Math, 17(1), 7–16.

    Google Scholar 

  • Jahnke, H. N. (1978). Zum Verhältnis von Wissensentwicklung und Begründung in der Mathematik—Beweisen als didaktisches Problem. Bielefeld: Institut für Didaktik der Mathematik.

    Google Scholar 

  • Knipping, C. (2001).Towards a comparative analysis of proof teaching. In M. v. d. Heuvel-Panhuizen (Ed.) Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education (vol. 3, pp. 249–256). Utrecht: Utrecht University.

  • Knipping, C. (2002). Proof and proving processes: teaching geometry in france and germany. In H.-G. Weigand (Ed.), Developments in mathematics education in German-speaking Countries. Selected papers from the annual conference on didactics of mathematics, Bern 1999 (pp. 44–54). Hildesheim: Franzbecker Verlag.

    Google Scholar 

  • Knipping, C. (2003). Beweisprozesse in der Unterrichtspraxis–Vergleichende Analysen von Mathematikunterricht in Deutschland und Frankreich. Hildesheim: Franzbecker Verlag.

    Google Scholar 

  • Knipping, C. (2004). Argumentations in proving discourses in mathematics classrooms. In G. Törner, et al. (Eds.), Developments in Mathematics Education in German-speaking Countries. Selected Papers from the Annual Conference on Didactics of Mathematics, Ludwigsburg, March 5–9, 2001 (pp. 73–84). Hildesheim: Franzbecker Verlag.

  • Krummheuer, G., & Brandt, B. (2001). Paraphrase und Traduktion. Partizipationstheoretische Elemente einer Interaktionstheorie des Mathematiklernens in der Grundschule. Weinheim: Beltz.

    Google Scholar 

  • Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: interaction in classroom cultures (pp. 229–269). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom. Two episodes and related theoretical abductions. J Math Behav, 26(1), 60–82.

    Article  Google Scholar 

  • Mariotti, M. A., Bartolini Bussi, M. G., Boero, P., Ferri, F., Garuti, R. (1997) Approaching geometry theorems in contexts: from history and epistemology to cognition. In E. Pehkonnen (Ed.), Proceedings of the 21st Conference of the International Group for the Psychology of Mathematics Education. Lathi, pp. 180–195

  • Mariotti, M. A., & Fischbein, E. (1997). Defining in classroom activities. Educ Stud Math, 34(3), 219–248.

    Article  Google Scholar 

  • Moore, R. C. (1994). Making the transition to formal proof. Educ Stud Math, 27(3), 249–266.

    Article  Google Scholar 

  • Pedemonte, B. (2002a). Relation between argumentation and proof in mathematics: cognitive unity or break? In J. Novotná (Ed.), Proceedings of the 2nd Conference of the European Society for Research in Mathematics Education (pp. 70–80). Marienbad.

  • Pedemonte, B. (2002b). Etude didactique et cognitive des rapports de l’argumentation et de la démonstration. IMAG, Grenoble: Leibniz.

    Google Scholar 

  • Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educ Stud Math, 66(1), 23–41.

    Article  Google Scholar 

  • Reid, D. (1995). Proving to explain. In L. Meira & D. Carraher (Eds.), Proceedings of the 19th Annual Conference of the International Group for the Psychology of Mathematics Education. Recife (pp. 137–144). Brasilia: Centro de Filosofia e Ciencias Humanos

  • Reid, D., Knipping, C., & Crosby, M. (2008). Refutations and the logic of practice (to be presented at PME 2008).

  • Reiss, K., Klieme, E., Heinze, A. (2001). Prerequisites for the understanding of proofs in the geometry classroom. In M. v. d. Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education (pp. 97–104), Utrecht: Utrecht University.

  • Sekiguchi, Y. (1991). An Investigation on proofs and refutations in the mathematics classroom. Unpublished Dissertation. The University of Georgia, Athens GA: Graduate Faculty.

    Google Scholar 

  • Strauss, A., & Corbin, J. (1990). Basics of qualitative research Grounded theory procedures and techniques. Newbury Park, CA: Sage.

    Google Scholar 

  • Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Toulmin, S. E. (1990). Cosmopolis. The hidden agenda of modernity. Chicago: The University of Chicago Press.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

Download references

Acknowledgments

I would like to thank David Reid for his comments on earlier drafts of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Knipping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knipping, C. A method for revealing structures of argumentations in classroom proving processes. ZDM Mathematics Education 40, 427–441 (2008). https://doi.org/10.1007/s11858-008-0095-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-008-0095-y

Keywords

Navigation