Skip to main content
Log in

Fake reflection

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We introduce a generalization of stationary set reflection which we call filter reflection, and show it is compatible with the axiom of constructibility as well as with strong forcing axioms. We prove the independence of filter reflection from ZFC, and present applications of filter reflection to the study of canonical equivalence relations over the higher Cantor and Baire spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Aspero, T. Hyttinen, V. Kulikov and M. Moreno, Reducibility of equivalence relations arising from non-stationary ideals under large cardinal assumptions, Notre Dame Journal of Symbolic Logic 60 (2019), 665–682.

    MATH  Google Scholar 

  2. J. E. Baumgartner, A new class of order types, Annals of Mathematical Logic 9 (1976), 187–222.

    Article  MathSciNet  Google Scholar 

  3. A. M. Brodsky and A. Rinot, A microscopic approach to Souslin-tree constructions. Part I, Annals of Pure and Applied Logic 168 (2017), 1949–2007.

    Article  MathSciNet  Google Scholar 

  4. J. Cummings, M. Foreman and M. Magidor, Squares, scales and stationary reflection, Journal of Mathematical Logic 1 (2001), 35–98.

    Article  MathSciNet  Google Scholar 

  5. J. Cummings and E. Schimmerling, Indexed squares, Israel Journal of Mathematics 131 (2002), 61–99.

    Article  MathSciNet  Google Scholar 

  6. J. Cummings, Iterated forcing and elementary embeddings, in Handbook of Set Theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 775–883.

    Chapter  Google Scholar 

  7. T. Eisworth, Successors of singular cardinals, in Handbook of Set Theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 1229–1350.

    Chapter  Google Scholar 

  8. S.-D. Friedman, T. Hyttinen and V. Kulikov, Generalized descriptive set theory and classification theory, Memoirs of the American Mathematical Society 230, (2014).

  9. G. Fernandes, M. Moreno and A. Rinot, Inclusion modulo nonstationary, Monatshefte für Mathematik 192 (2020), 827–851.

    Article  MathSciNet  Google Scholar 

  10. J. Gregory, Higher Souslin trees and the generalized continuum hypothesis, Journal of Symbolic Logic 41 (1976), 663–671.

    Article  MathSciNet  Google Scholar 

  11. K. Hauser, Indescribable cardinals without diamonds, Archive for Mathematical Logic 31 (1992), 373–383.

    Article  MathSciNet  Google Scholar 

  12. A. Hellsten, Diamonds on large cardinals, AcademiæScientiarum Fennicæ. Annales. Mathematica. Dissertationes 134, (2003).

  13. T. Hyttinen, V. Kulikov and M. Moreno, A generalized Borel-reducibility counterpart of Shelah’s main gap theorem, Archive for Mathematical Logic 56 (2017), 175–185.

    Article  MathSciNet  Google Scholar 

  14. Y. Hayut and C. Lambie-Hanson, Simultaneous stationary reflection and square sequences, Journal of Mathematical Logic 17 (2017), Article no. 1750010.

  15. L. Harrington and S. Shelah, Some exact equiconsistency results in set theory, Notre Dame Journal of Formal Logic 26 (1985), 178–188.

    MathSciNet  MATH  Google Scholar 

  16. R. B. Jensen, The fine structure of the constructible hierarchy, Annals of Mathematical Logic 4 (1972), 229–308; Erratum, ibid. 4 (1972), 443.

    Article  MathSciNet  Google Scholar 

  17. A. Kanamori, The Higher Infinite, Springer Monographs in Mathematics, Springer, Berlin, 2009.

    MATH  Google Scholar 

  18. P. Larson, Separating stationary reflection principles, Journal of Symbolic Logic 65 (2000), 247–258.

    Article  MathSciNet  Google Scholar 

  19. M. Magidor, Reflecting stationary sets, Journal of Symbolic Logic 47 (1982), 755–771.

    Article  MathSciNet  Google Scholar 

  20. J. T. Moore, The proper forcing axiom, Prikry forcing, and the singular cardinals hypothesis, Annals of Pure and Applied Logic 140 (2006), 128–132.

    Article  MathSciNet  Google Scholar 

  21. M. Moreno, Finding the main gap in the Borel-reducibility hierarchy, Thesis, University of Helsinki, 2017.

  22. A. H. Mekler and S. Shelah, The consistency strength of “every stationary set reflects”, Israel Journal of Mathematics 67 (1989), 353–366.

    Article  MathSciNet  Google Scholar 

  23. H. Sakai, Improper ω1-stationary preserving poset of size ω1, http://www2.kobe-u.ac.jp/~hsakai/Research/works.html.

  24. H. Sakai, Partial square at ω1is implied by MM but not by PFA, Fundamenta Mathematicae 215 (2011), 109–131.

    Article  MathSciNet  Google Scholar 

  25. S. Shelah, On successors of singular cardinals, in Logic Colloquium’ 78 (Mons, 1978), Studies in Logic and the Foundations of Mathematics, Vol. 97, North-Holland, Amsterdam-New York, 1979, pp. 357–380.

    Google Scholar 

  26. S. Shelah, Reflecting stationary sets and successors of singular cardinals, Archive for Mathematical Logic 31 (1991), 25–53.

    Article  MathSciNet  Google Scholar 

  27. S. Shelah, Diamonds, Proceedings of the American Mathematical Society 138 (2010), 2151–2161.

    Article  MathSciNet  Google Scholar 

  28. W. Sun, Stationary cardinals, Archive for Mathematical Logic 32 (1993), 429–442.

    Article  MathSciNet  Google Scholar 

  29. S. Shelah and J. Väänänen, A note on extensions of infinitary logic, Archive for Mathematical Logic 44 (2005), 63–69.

    Article  MathSciNet  Google Scholar 

  30. S. Todorčević and J. Väänänen, Trees and Ehrenfeucht-Fraïssé games, Annals of Pure and Applied Logic 100 (1999), 69–97.

    Article  MathSciNet  Google Scholar 

  31. J. Väanänen, Models and Games, Cambridge Studies in Advanced Mathematics, Vol. 132, Cambridge University Press, Cambridge, 2011.

    Book  Google Scholar 

  32. J. Zhang, Reflection principles, GCH and the uniformization properties, https://arxiv.org/abs/2001.12005.

Download references

Acknowledgements

This research was partially supported by the European Research Council (grant agreement ERC-2018-StG 802756). The third author was also partially supported by the Israel Science Foundation (grant agreement 2066/18). At the end of the preparation of this article, the second author was visiting the University of Vienna supported by the Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of Science and Letters.

We thank Andreas Lietz, Benjamin Miller, Ralf Schindler and Liuzhen Wu for their feedback on a preliminary version of this manuscript.

We are deeply grateful to the anonymous referee for their corrections, comments and improvements. Most notably, the second part of the proof of Claim 5.4.2 is due to them, and enabled to waive the initial hypothesis that X and S are disjoint.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assaf Rinot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, G., Moreno, M. & Rinot, A. Fake reflection. Isr. J. Math. 245, 295–345 (2021). https://doi.org/10.1007/s11856-021-2213-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-021-2213-2

Navigation