Skip to main content

Iterated Forcing and Elementary Embeddings

  • Chapter
  • First Online:
Handbook of Set Theory

Abstract

I give a survey of some forcing techniques which are useful in the study of large cardinals and elementary embeddings. The main theme is the problem of extending a (possibly generic) elementary embedding of the universe to a larger domain, which is typically a generic extension of the ground model by some iterated forcing construction.

Topics covered include

(a) building, transfer and alteration of generic objects

(b) strong and weak master conditions

(c) the use of guessing principles

(d) term forcing

(e) the Kunen, Levy, Mitchell and Silver collapses

The techniques which I discuss are illustrated with many examples. These include the failure of GCH at a measurable cardinal, the consistency of PFA, the laver indestructibility theorem, and the existence of a saturated ideal on the least uncountable cardinal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 899.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. U. Abraham. Proper forcing. Chapter 5 in this Handbook. 10.1007/978-1-4020-5764-9_6.

  2. Uri Abraham. Aronszajn trees on \(\aleph\sb{2}\) and \(\aleph\sb{3}\) . Annals of Pure and Applied Logic, 24(3):213–230, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  3. Uri Abraham and Saharon Shelah. Forcing closed unbounded sets. The Journal of Symbolic Logic, 48(3):643–657, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  4. Arthur Apter and James Cummings. Identity crises and strong compactness. The Journal of Symbolic Logic, 65(4):1895–1910, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  5. James E. Baumgartner. A new class of order types. Annals of Mathematical Logic, 9(3):187–222, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  6. James E. Baumgartner. Iterated forcing. In Adrian R.D. Mathias, editor, Surveys in Set Theory, volume 87 of London Mathematical Society Lecture Note Series, pages 1–59. Cambridge University Press, Cambridge, 1983.

    Google Scholar 

  7. James E. Baumgartner, Leo A. Harrington, and Eugene M. Kleinberg. Adding a closed unbounded set. The Journal of Symbolic Logic, 41(2):481–482, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  8. James Cummings. A model in which GCH holds at successors but fails at limits. Transactions of the American Mathematical Society, 329(1):1–39, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  9. James Cummings. Compactness and incompactness phenomena in set theory. In Matthias Baaz, Sy D. Friedman, and Jan Krajicek, editors, Logic Colloquium ’01, volume 20 of Lecture Notes in Logic, pages 139–150. Association for Symbolic Logic, Poughkeepsie, 2005.

    Google Scholar 

  10. James Cummings. Notes on singular cardinal combinatorics. Notre Dame Journal of Formal Logic, 46(3):251–282, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  11. James Cummings and Matthew Foreman. The tree property. Advances in Mathematics, 133(1):1–32, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  12. James Cummings and Saharon Shelah. Some independence results on reflection. Journal of the London Mathematical Society (2), 59(1):37–49, 1999.

    Article  MathSciNet  Google Scholar 

  13. James Cummings, Mirna Dz̆amonja, and Saharon Shelah. A consistency result on weak reflection. Fundamenta Mathematicae, 148(1):91–100, 1995.

    MATH  MathSciNet  Google Scholar 

  14. James Cummings, Matthew Foreman, and Menachem Magidor. Squares, scales and stationary reflection. Journal of Mathematical Logic, 1(1):35–98, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  15. Keith J. Devlin. The Yorkshireman’s guide to proper forcing. In Adrian R.D. Mathias, editor, Surveys in Set Theory, volume 87 of London Mathematical Society Lecture Note Series, pages 60–115. Cambridge University Press, Cambridge, 1983.

    Google Scholar 

  16. Keith J. Devlin. Constructibility. Springer, Berlin, 1984.

    MATH  Google Scholar 

  17. William B. Easton. Powers of regular cardinals. Annals of Mathematical Logic, 1:139–178, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  18. Matthew Foreman. Games played on Boolean algebras. The Journal of Symbolic Logic, 48(3):714–723, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  19. Matthew Foreman. More saturated ideals. In Cabal Seminar 79–81, volume 1019 of Lecture Notes in Mathematics, pages 1–27. Springer, Berlin, 1983.

    Chapter  Google Scholar 

  20. Matthew Foreman and W. Hugh Woodin. The generalized continuum hypothesis can fail everywhere. Annals of Mathematics, 133(1):1–35, 1991.

    Article  MathSciNet  Google Scholar 

  21. Matthew Foreman, Menachem Magidor, and Saharon Shelah. Martin’s Maximum, saturated ideals, and nonregular ultrafilters. I. Annals of Mathematics, 127(1):1–47, 1988.

    Article  MathSciNet  Google Scholar 

  22. Moti Gitik. Prikry-type forcings. Chapter 16 in this Handbook. 10.1007/978-1-4020-5764-9_17.

  23. Moti Gitik. The nonstationary ideal on \(\aleph\sb2\) . Israel Journal of Mathematics, 48(4):257–288, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  24. Moti Gitik. The negation of the singular cardinal hypothesis from o(κ)=κ ++. Annals of Pure and Applied Logic, 43(3):209–234, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  25. Moti Gitik. Some results on the nonstationary ideal. Israel Journal of Mathematics, 92(1–3):61–112, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  26. Moti Gitik. Some results on the nonstationary ideal. II. Israel Journal of Mathematics, 99:175–188, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  27. Moti Gitik and Menachem Magidor. The singular cardinal hypothesis revisited. In Haim Judah, Winfried Just, and W. Hugh Woodin, editors, Set Theory of the Continuum (Berkeley, 1989), pages 243–279. Mathematical Sciences Research Institute Publication, No. 26. Springer, New York, 1992.

    Google Scholar 

  28. Moti Gitik and Saharon Shelah. On the \(\mathbb{I}\) -condition. Israel Journal of Mathematics, 48(2–3):148–158, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  29. Moti Gitik and Saharon Shelah. On certain indestructibility of strong cardinals and a question of Hajnal. Archive for Mathematical Logic, 28(1):35–42, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  30. Charles Gray. Iterated forcing from the strategic point of view. PhD thesis, University of California, Berkeley, 1980.

    Google Scholar 

  31. Joel D. Hamkins. Fragile measurability. The Journal of Symbolic Logic, 59(1):262–282, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  32. Joel D. Hamkins. Small forcing makes any cardinal superdestructible. The Journal of Symbolic Logic, 61(1):53–58, 1998.

    MathSciNet  Google Scholar 

  33. Joel D. Hamkins. Extensions with the approximation and cover properties have no new large cardinals. Fundamenta Mathematicae, 180(3):257–277, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  34. Kai Hauser. The indescribability of the order of the indescribable cardinals. Annals of Pure and Applied Logic, 57(1):45–91, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  35. Kai Hauser. Indescribable cardinals without diamonds. Archive for Mathematical Logic, 31(5):373–383, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  36. Tetsuya Ishiu and Yasuo Yoshinobu. Directive trees and games on posets. Proceedings of the American Mathematical Society, 130(5):1477–1485, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  37. Thomas J. Jech. A game theoretic property of Boolean algebras. In Angus Macintyre, Leszek Pacholski, and Jeffrey B. Paris, editors, Logic Colloquium ’77 (Proc. Conf., Wrocław, 1977), volume 96 of Studies in Logic and the Foundations of Mathematics, pages 135–144. North-Holland, Amsterdam, 1978.

    Chapter  Google Scholar 

  38. Thomas J. Jech. Stationary subsets of inaccessible cardinals. In James E. Baumgartner, Donald A. Martin, and Saharon Shelah, editors, Axiomatic Set Theory (Boulder, 1983), volume 31 of Contemporary Mathematics, pages 115–142. American Mathematical Society, Providence, 1984.

    Google Scholar 

  39. Thomas J. Jech. Set Theory. Springer, Berlin, 2002. Third millennium edition.

    Google Scholar 

  40. Thomas J. Jech and W. Hugh Woodin. Saturation of the closed unbounded filter on the set of regular cardinals. Transactions of the American Mathematical Society, 292(1):345–356, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  41. Thomas J. Jech, Menachem Magidor, William J. Mitchell, and Karel L. Prikry. Precipitous ideals. The Journal of Symbolic Logic, 45(1):1–8, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  42. Ronald B. Jensen. The fine structure of the constructible hierarchy. Annals of Mathematical Logic, 4:229–308, 1972. With a section by Jack Silver. Erratum, ibid 4:443, 1972.

    Article  MATH  Google Scholar 

  43. Akihiro Kanamori. The Higher Infinite. Springer Monographs in Mathematics. Springer, Berlin, 2003. Second edition.

    MATH  Google Scholar 

  44. Kenneth Kunen. Some applications of iterated ultrapowers in set theory. Annals of Mathematical Logic, 1:179–227, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  45. Kenneth Kunen. Saturated ideals. The Journal of Symbolic Logic, 43(1):65–76, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  46. Kenneth Kunen. Set Theory. An Introduction to Independence Proofs. North-Holland, Amsterdam, 1983. Reprint of the 1980 original.

    MATH  Google Scholar 

  47. Kenneth Kunen and Jeffrey B. Paris. Boolean extensions and measurable cardinals. Annals of Mathematical Logic, 2(4):359–377, 1970/1971.

    Article  MathSciNet  Google Scholar 

  48. Kenneth Kunen and Franklin D. Tall. Between Martin’s Axiom and Souslin’s Hypothesis. Fundamenta Mathematicae, 102(3):173–181, 1979.

    MATH  MathSciNet  Google Scholar 

  49. Richard Laver. Making the supercompactness of κ indestructible under κ-directed closed forcing. Israel Journal of Mathematics, 29(4):385–388, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  50. Azriel Levy and Robert M. Solovay. Measurable cardinals and the Continuum Hypothesis. Israel Journal of Mathematics, 5:234–248, 1967.

    Article  MATH  MathSciNet  Google Scholar 

  51. Menachem Magidor. Personal communication.

    Google Scholar 

  52. Menachem Magidor. How large is the first strongly compact cardinal? or A study on identity crises. Annals of Mathematical Logic, 10(1):33–57, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  53. Menachem Magidor. On the singular cardinals problem. I. Israel Journal of Mathematics, 28(1–2):1–31, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  54. Menachem Magidor. On the existence of nonregular ultrafilters and the cardinality of ultrapowers. Transactions of the American Mathematical Society, 249(1):97–111, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  55. Menachem Magidor. Reflecting stationary sets. The Journal of Symbolic Logic, 47(4):755–7711983, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  56. Menachem Magidor and Saharon Shelah. The tree property at successors of singular cardinals. Archive for Mathematical Logic, 35(5–6):385–404, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  57. William J. Mitchell. Aronszajn trees and the independence of the transfer property. Annals of Pure and Applied Logic, 5:21–46, 1972/73.

    MathSciNet  Google Scholar 

  58. William J. Mitchell. Sets constructible from sequences of ultrafilters. The Journal of Symbolic Logic, 39:57–66, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  59. William J. Mitchell. The core model for sequences of measures. I. Mathematical Proceedings of the Cambridge Philosophical Society, 95(2):229–260, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  60. Kanji Namba. Independence proof of \((\omega,\,\omega\sb{\alpha })\) -distributive law in complete Boolean algebras. Commentarii Mathematici Universitatis Sancti Pauli, 19:1–12, 1971.

    MATH  MathSciNet  Google Scholar 

  61. Dana S. Scott. Measurable cardinals and constructible sets. Bulletin de l’Académie Polonaise de Sciences, Série des Sciences Mathématiques, Astronomiques et Physiques, 9:521–524, 1961.

    MATH  Google Scholar 

  62. Saharon Shelah. A weak generalization of MA to higher cardinals. Israel Journal of Mathematics, 30(4):297–306, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  63. Saharon Shelah. Reflecting stationary sets and successors of singular cardinals. Archive for Mathematical Logic, 31(1):25–53, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  64. Saharon Shelah. Proper and Improper Forcing. Perspectives in Mathematical Logic. Springer, Berlin, 1998.

    MATH  Google Scholar 

  65. Robert M. Solovay. A model of set-theory in which every set of reals is Lebesgue measurable. Annals of Mathematics (2), 92:1–56, 1970.

    Article  MathSciNet  Google Scholar 

  66. John R. Steel. PFA implies ADL(ℝ). The Journal of Symbolic Logic, 70(4):1255–1296, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  67. Stevo Todorčević. A note on the proper forcing axiom. In James E. Baumgartner, Donald A. Martin, and Saharon Shelah, editors, Axiomatic Set Theory (Boulder, 1983), volume 31 of Contemporary Mathematics, pages 209–218. American Mathematical Society, Providence, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Cummings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cummings, J. (2010). Iterated Forcing and Elementary Embeddings. In: Foreman, M., Kanamori, A. (eds) Handbook of Set Theory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5764-9_13

Download citation

Publish with us

Policies and ethics