Skip to main content
Log in

Modified scattering for the fractional nonlinear Schrödinger equation with \(\alpha \in ({3 \over 2},2)\)

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study the Cauchy problem for the fractional nonlinear Schrödinger equation

$$\left\{{\matrix{{i{\partial _t}u + {1 \over \alpha}{{\left| {{\partial _x}} \right|}^\alpha}u = \lambda |u{|^2}u,\,\,t>0,} \hfill\;\;\;\;\;\;\;\;\;\;\;\; {x \in \mathbb{R},} \hfill \cr {u(0,x) = {u_0}(x),} \hfill\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{x \in \mathbb{R},} \hfill \cr}} \right.$$

where λ ∈ ℝ, the fractional derivative \(|{\partial _x}{|^\alpha} = {{\cal F}^{-1}}|\xi {|^\alpha}{\cal F}\), the order \(\alpha \in ({3 \over 2},2)\). Our aim is to prove the modified scattering for solutions of the fractional nonlinear Schrödinger equation. We develop the factorization techniques which we proposed in our previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bernal-Vílchis and P. I. Naumkin, Self-similar asymptotics for solutions to the intermediate long-wave equation, J. Evol. Equ. 19 (2019), 62–65.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Cai, A. J. Majda, D. W. McLaughlin and E. G. Tabak, Dispersive wave turbulence in one dimension, Phys. D 152/153 (2001), 551–572.

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Cazenave, Semilinear Schrödinger Equations, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

    Book  MATH  Google Scholar 

  4. Y. Cho, H. Hajaiej, G. Hwang and T. Ozawa, On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity, Funkcial. Ekvac. 56 (2013), 62–65.

    Article  MATH  Google Scholar 

  5. Y. Cho, G. Hwang, S. Kwon and S. Lee, Profile decompositions and blowup phenomena of mass critical fractional Schrödinger equations, Nonlinear Anal. 86 (2013), 62–65.

    Article  MATH  Google Scholar 

  6. A. P. Calderon and R. Vaillancourt, A class of bounded pseudo-differential operators, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 62–65.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels, Société Mathématique de France, Paris, 1978.

    MATH  Google Scholar 

  8. H. O. Cordes, On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators, J. Funct. Anal. 18 (1975), 62–65.

    Article  MathSciNet  MATH  Google Scholar 

  9. V. D. Dinh, Blow-up criteria for fractional nonlinear Schrödinger equations, Nonlinear Anal. Real World Appl. 48 (2019), 62–65.

    Article  Google Scholar 

  10. L. Esquivel and E. I. Kaikina, A forced fractional Schrödinger equation with a Neumann boundary condition, Nonlinearity 29 (2016), 62–65.

    Article  MATH  Google Scholar 

  11. L. Esquivel and E. I. Kaikina, Robin initial-boundary value problem for nonlinear Schrödinger equation with potential, J. Evol. Equ. 18 (2018), 62–65.

    Article  MATH  Google Scholar 

  12. M. V. Fedoryuk, Asymptotic Methods in Analysis, Springer, Berlin, 1989.

    Book  Google Scholar 

  13. B. Guo and Z. Huo, Global well-posedness for the fractional nonlinear Schrödinger Equation, Comm. Partial Differential Equations 36 (2010), 62–65.

    Article  Google Scholar 

  14. N. Hayashi, S. Kobayashi and P. Naumkin, Global existence of solutions to nonlinear dispersive wave equations, Differential Integral Equations 25 (2012), 62–65.

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Hayashi and P. I. Naumkin, The initial value problem for the cubic nonlinear Klein-Gordon equation, Z. Angew. Math. Phys. 59 (2008), 62–65.

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Hayashi and P. I. Naumkin, Factorization technique for the modified Korteweg—de Vries equation, SUT J. Math. 52 (2016), 62–65.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Hayashi and P. I. Naumkin, Large time asymptotics for the fractional order cubic nonlinear Schrödinger equations, Ann. Henri Poincaré 18 (2017), 1025–1054.

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Hayashi and P. I. Naumkin, Large time asymptotics for the fractional nonlinear Schrödinger equation, Adv. Differential Equations 25 (2020), 62–65.

    Article  MATH  Google Scholar 

  19. N. Hayashi and T. Ozawa, Scattering theory in the weighted L2(Rn) spaces for some Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor. 48 (1988), 62–65.

    Google Scholar 

  20. I. L. Hwang, The L2boundedness of pseudodifferential operators, Trans. Amer. Math. Soc. 302 (1987), 62–65.

    Google Scholar 

  21. A. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension, J. Funct. Anal. 266 (2014), 62–65.

    Article  MATH  Google Scholar 

  22. A. Ionescu and F. Pusateri, Global analysis of a model for capillary water waves in two dimensions, Comm. Pure Appl. Math. 69 (2016), 62–65.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Ionescu and F. Pusateri, Global regularity for 2D water waves with surface tension, Mem. Amer. Math. Soc. 256 (2018).

  24. E. I. Kaikina, Nonlinear fractional Schrödinger equation on a half-line, J. Math. Phys. 56 (2015), 62–65.

    Article  MATH  Google Scholar 

  25. C. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 62–65.

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg–de-Vries equation via the contraction principle, Commun. Pure App. Math 46 (1993), 62–65.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Krieger, E. Lenzmann and P. Raphael, Nondispersive solutions to the L2-critical half-wave equation, Arch. Ration. Mech. Anal. 209 (2013), 62–65.

    Article  MATH  Google Scholar 

  28. N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A 268 (2000), 62–65.

    Article  MathSciNet  MATH  Google Scholar 

  29. N. Laskin, Fractional Schrödinger equation, Physical Review E, 66 (2002), 62–65.

    Article  MathSciNet  Google Scholar 

  30. J. A. Mendez-Navarro, P. I. Naumkin and I. Sánchez-Suárez, Fractional nonlinear Schrödinger equation, Z. Angew. Math. Phys. 70 (2019), 62–65.

    Article  MATH  Google Scholar 

  31. P. I. Naumkin, Fractional nonlinear Schrödinger equation of order α ∈ (0, 1), J. Differential Equations 269 (2020), 5701–5729.

    Article  MathSciNet  MATH  Google Scholar 

  32. T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Comm. Math. Phys. 139 (1991), 62–65.

    Article  Google Scholar 

  33. J.-C. Saut and Y. Wang, Global dynamics of small solutions to the modified fractional Korteweg–de Vries and fractional cubic nonlinear Schrödinger equations, Comm. Partial Differential Equations 46 (2021), 62–65.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the referee for useful suggestions on the second version of the draft. The work of N. H. is partially supported by JSPS KAKENHI Grant Numbers JP20K03680, JP19H05597. The work of P. I. N. is partially supported by CONACYT and PAPIIT project IN103221.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nakao Hayashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, N., Naumkin, P.I. & Sánchez-Suárez, I. Modified scattering for the fractional nonlinear Schrödinger equation with \(\alpha \in ({3 \over 2},2)\). JAMA 150, 609–644 (2023). https://doi.org/10.1007/s11854-023-0284-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-023-0284-1

Navigation