Skip to main content

Asymptotic Methods in Analysis

  • Chapter
Analysis I

Part of the book series: Encyclopaedia of Mathematical Sciences ((EMS,volume 13))

Abstract

An asymptotic formula or asymptotic form for a function f(x) is the name usually given to an approximate formula f(x) ≈ g(x) in some domain of values of x, where g(x) is ‘simpler’ then f(x). For example, if f(x) is an integral, then g(x) must either be given in terms of the values of the integrand and its derivatives at a finite number of points, or in terms of some simpler integral. If f(x) is a solution of an ordinary differential equation, then g(x) must either be expressed in quadratures or be the solution of a ‘simpler’ differential equation. This list can be extended—there is an unwritten heirarchy of asymptotic formulae. Of course all these definitions are very blurred. ‘“What is asymptotics?” This question is about as difficult to answer as the question “What is mathematics?”’

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnol’d, V.I., Varchenko, A.N., Gusein-Zade, S.M., : Singularities of differentiate mappings. I. Classification of critical points, caustics and wave fronts. Moscow: Nauka, 1982. English transl.: Boston: Birkhäuser, 1985. Zbl. 513.58001, Zbl. 554.58001

    Google Scholar 

  2. Arnol’d, V.l., Varchenko, A.N., Gusein-Zade, S.M.: Singularities of differentiable mappings. II. Monodromy and asymptotics of integrals. Moscow: Nauka, 1984. Zbl. 545.58001

    Google Scholar 

  3. Bakhvalov, N.S., Panasenko, G.P.: Averaging of processes in periodic media. Mathematical problems of the mechanics of composite materials. Moscow: Nauka, 1984. Zbl 607.73009

    Google Scholar 

  4. Birkhoff, G.D.: Quantum mechanics and asymptotic series. Bull. Am. Math. Soc. 39, 681–700 (1933). Jrb. 59,1530

    Article  MathSciNet  Google Scholar 

  5. Clarkson, P.A., McLeod, J.B.: A connection formula for the second Painlevé transcendent. Lect. Notes Math. 964,135–142 (1982). Zbl. 502.34007.

    Article  MathSciNet  Google Scholar 

  6. Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. New York: McGraw-Hill, 1955. Zbl. 64, 330

    MATH  Google Scholar 

  7. Copson, E.T.: Asymptotic expansions. Cambridge: University Press, 1965. Zbl. 123, 260

    Book  MATH  Google Scholar 

  8. de Bruijn, N.G.: Asymptotic methods in analysis. Amsterdam: North-Holland, 1958 Zbl. 82,42 (2nd ed. 1975, 3rd ed., New York: Dover 1981)

    MATH  Google Scholar 

  9. Debye, P., Semikonvergente Entwicklungen für die Zylinder-Funktionen und ihre Ausdehnung ins Komplexe. München, Berlin, 40, No. 5, 1–29 (1910)

    Google Scholar 

  10. Erdelyi, A.: Asymptotic expansions. New York: Dover Publ, 1956. ZbL 70, 290.

    MATH  Google Scholar 

  11. Evgrafov, M.A.: Asymptotic estimates and entire functions. 3rd. ed. Moscow: Nauka, 1979. Zbl 447.30016

    MATH  Google Scholar 

  12. Fedoryuk, M.V.: Saddle-point method. Moscow: Nauka, 1977

    MATH  Google Scholar 

  13. Fedoryuk, M.V.: Asymptotic methods for linear ordinary differential equations. Moscow: Nauka, 1983. Zbl. 538.34001

    MATH  Google Scholar 

  14. Fedoryuk, M.V.: Asymptotics: Integrals and Series. Moscow: Nauka, 1987

    MATH  Google Scholar 

  15. Fröman, N., Fröman, P.O.: JWKB approximation: contributions to the theory. Amsterdam: North-Holland, 1965. Zbl. 129,419

    MATH  Google Scholar 

  16. Green, G.: On the motion of waves in a variable canal of small depth and width. Trans. Camb. Phil. Soc. 6, 457–462 (1837)

    Google Scholar 

  17. Heading, J.: An introduction to phase-integral methods. London: Methuen, New York: Wiley, 1962. Zbl. 115,71

    MATH  Google Scholar 

  18. Hille, E.: Ordinary differential equations in the complex domain. New York: Wiley, 1976. Zbl. 343.34007

    MATH  Google Scholar 

  19. Ince, E.L.: Ordinary differential equations. London: 1927. Longmans, Green & Co. Jrb. 53, 399

    MATH  Google Scholar 

  20. Kelvin Lord: On the waves produced by a single impulse in water of any depth, or in a dispersive medium. Phil. Mag. 5, 252–255 (1887)

    Google Scholar 

  21. Langer, R.E.: The asymptotic solutions of certain linear ordinary differential equations of the second order. Trans Am. Math. Soc. 36, 90–106 (1934). Zbl. 8, 312

    Article  Google Scholar 

  22. Laplace, Le Marquis de: Théorie analytique des probabilités. Paris: Mme Ve Courcier 1812

    Google Scholar 

  23. Liouville, J.: Sur le développement des fonctions ou partie de fonction en series. J. Math. Pures Appl. 2, No. 2,16–36(1837)

    Google Scholar 

  24. Maslov, V.P.: Theory of perturbations and asymptotic methods. Moscow: Izdat. Mose. Gos. Univ., 1965. French transl.: Paris: Gauthier-Villars 1972. Zbl. 247.47010

    Google Scholar 

  25. Maslov, V.P., Fedoryuk, M.V. Quasi classical approximation for the equations of quantum mechanics. Moscow: Nauka, 1976. Zbl. 449.58002 English transl.: Dordrecht Reidel 1981

    Google Scholar 

  26. Naimark, M.A.: Linear differential operators. (2nd ed. Moscow: Nauka, 1969. Zbl 193, 41) New York: Ungar Vol. I (1967. Zbl. 219.34001), II (1968 Zbl. 227.34020) (1st ed. 1954 Zbl. 57, 71)

    Google Scholar 

  27. Olver, F.W.J.: Introduction to asymptotics and special functions. New York-London: Academic Press, 1974. Zbl. 308.41023

    MATH  Google Scholar 

  28. Riekstinš, E.J.: Asymptotic expansions of integrals. Vols. 1, 2, 3. Riga: Zinatne 1974, 1977, 1981. Vol. 1 (Zbl. 292.41021), Vol. 2 (Zbl. 358.41007), Vol. 3 (Zbl. 483.41001)

    Google Scholar 

  29. Riemann, B.: Sullo svolgimento del quoziente di due serie ipergeometriche in frazione continua infinita, 1863. In: Gesammelte Werke, Leipzig: Teubner 1876. Jrb. 8, 231

    Google Scholar 

  30. Riemann, B.: Über die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe. Abhandl. d. Königl. Gesellsch. der Wiss., 1867

    Google Scholar 

  31. Segur, H., Ablowitz, M.J.: Asymptotic solution of nonlinear evolution equations and a Painlevé transcendent. Physica D, 1–2, 105–184 (1981)

    Google Scholar 

  32. Sibuya, Y.: Global theory of a second order linear differential equation with a polynomial coefficient. Amsterdam: North-Holland, 1975. Zbl. 322.34006

    MATH  Google Scholar 

  33. Stokes, G.G.: On the discontinuity of arbitrary constants which appear in divergent developments. Trans. Camb. Phil. Soc. 10 (1857)

    Google Scholar 

  34. Tamarkin, Ya.D.: On some general questions in the theory of ordinary linear differential equations and on the expansion of arbitrary functions in series. Petrograd, 1917. Jrb. 47, 944

    Google Scholar 

  35. Titchmarsh, E.C.: Eigenfunction expansions associated with second-order differential equations. Oxford: Clarendon Press, Vol. 1,1946; Vol. 2,1958. Zbl. 61,135. Zbl. 57, 276

    MATH  Google Scholar 

  36. Vainberg, B.R.: Asymptotic methods in the equations of mathematical physics. Moscow: Izdat. Mose. Gos. Univ. 1982. Zbl. 518.35002

    Google Scholar 

  37. Wasow, W.: Asymptotic expansions for ordinary differential equations. New York: Wiley - Interscience, 1965. Zbl. 133, 353. English transl.: Moscow: Mir 1968

    MATH  Google Scholar 

  38. Wasow, W.: Linear turning point theory. New York: Springer-Verlag, 1985. Zbl. 558.34049

    Book  MATH  Google Scholar 

  39. Whittaker, E.T., Watson, G.N.: A course of modern analysis. Cambridge: University Press, 1927. Jrb. 53,180

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fedoryuk, M.V. (1989). Asymptotic Methods in Analysis. In: Gamkrelidze, R.V. (eds) Analysis I. Encyclopaedia of Mathematical Sciences, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61310-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61310-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64786-4

  • Online ISBN: 978-3-642-61310-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics