Skip to main content
Log in

Large Time Asymptotics for the Fractional Order Cubic Nonlinear Schrödinger Equations

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We consider the Cauchy problem for the nonlinear Schrödinger equations of fractional order

$$\left\{\begin{array}{l}i\partial _{t}u-2\left( -\partial _{x}^{2} \right)^{\frac{1}{4}} \, u=F\left( u\right) \\ u\left( 0,x\right) =u_{0} \left( x\right),\end{array}\right.$$

where \({F\left( u\right) }\) is the cubic nonlinearity

$$F\left( u\right) =\lambda \left| u\right| ^{2}u$$

with \({\lambda \in \mathbf{R}}\). We find the large time asymptotics of solutions to the Cauchy problem. We use the factorization technique similar to that developed for the Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barab J.E.: Non-existence of asymptotically free solutions for nonlinear Schrödinger equation. J. Math. Phys. 25(11), 3270–3273 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Cho Y., Ozawa T., Xia S.: Remarks on some dispersive estimates. Commun. Pure Appl. Anal. 10(4), 1121–1128 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cho, Y., Hwang, G., Kwon, S., Lee, S.: Well-posedness and ill-posedness for the cubic fractional Schrödinger equations. Discrete Contin. Dyn. Syst. 35(7), 2863–2880 (2015). doi:10.3934/dcds.2015.35.2863

  4. Constantin P., Majda A.J., Tabak E.: Formation of strong fronts in the Q-D quasigeostrophic thermal active scalar. Nonlinearity 7(6), 1495–1533 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Delort J.-M.: Existence globale et comportement asymptotique pour l’équation de Klein–Gordon quasi-linéaire à données petites en dimension 1. Ann. Sci. École Norm. Sup. (4) 34, 1–61 (2001)

    MathSciNet  Google Scholar 

  6. Fedoryuk, M.V.: Asymptotics: Integrals and Series. Mathematical Reference Library, Nauka, Moscow (1987)

  7. Ginibre J., Ozawa T.: Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension \({n\geq 2}\). Commun. Math. Phys. 151, 619–645 (1993)

    Article  ADS  MATH  Google Scholar 

  8. Guo B., Han Y., Xin J.: Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 204(1), 468–477 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Hayashi N., Kobayashi S., Naumkin P.: Global existence of solutions to nonlinear dispersive wave equations. Differ. Integral Equ. 25, 685–698 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Hayashi N., Naumkin P.I.: Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations. Am. J. Math. 120(2), 369–389 (1998)

    Article  MATH  Google Scholar 

  11. Hayashi N., Naumkin P.I.: Large time behavior of solutions for the modified Korteweg–de Vries equation. Int. Math. Res. Not. 8, 395–418 (1998)

    MATH  Google Scholar 

  12. Hayashi N., Naumkin P.I.: Large time asymptotics of solutions to the generalized Benjamin–Ono equation. Trans. Am. Math. Soc. 351, 109–130 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hayashi N., Naumkin P.I.: The initial value problem for the cubic nonlinear Klein–Gordon equation. Zeitschrift für Angewandte Mathematik und Physik 59(6), 1002–1028 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Hayashi, N., Naumkin, P.: Quadratic nonlinear Klein–Gordon equation in one dimension. J. Math. Phys. 53, 103711–36 (2012). doi:10.1063/1.4759156

  15. Hayashi, N., Naumkin, P.: Large time asymptotics for the reduced Ostrovsky equation. Commun. Math. Phys. 335(2), 713–738 (2015). doi:10.1007/s00220-014-2222-7

  16. Hayashi, N., Naumkin, P.: Global existence and asymptotic behavior of solutions to the fourth-order nonlinear Schrödinger equation in the critical case. Nonlinear Anal. 116, 112–131 (2015). doi:10.1016/j.na.2014.12.024

  17. Hayashi, N., Ozawa, T.: Scattering theory in the weighted \({\mathbf{L}^{2}({\mathbf{R}}^{n})}\) spaces for some Schrödinger equations. Ann. I.H.P. (Phys. Théor.) 48, 17–37 (1988)

  18. Hong, Y., Sire, Y.: On fractional Schrödinger equations in Sobolev spaces. Commun. Pure Appl. Anal. 14(6), 2265–2282 (2015). doi:10.3934/cpaa.2015.14.2265

  19. Ionescu A., Pusateri F.: Nonlinear fractional Schrödinger equations in one dimension. J. Funct. Anal. 266, 139–176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ionescu A., Pusateri F.: Global solutions for the gravity water waves system in 2D. Invent. Math. 199(3), 653–804 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Ionescu, A., Pusateri, F.: Global analysis of a model for capillary water waves in 2D. arXiv:1406.6042

  22. Ionescu, A., Pusateri, F.: Global capillary waves in 2D. arXiv:1408.4428

  23. Kenig C.E., Ponce G., Vega L.: Oscillatory integrals and regularity of dispersive equations. Indiana Univ. Math. J. 40, 33–69 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Klainerman S.: The null condition and global existence to nonlinear wave equations. Lect. Appl. Math. 23, 293–326 (1986)

    MathSciNet  MATH  Google Scholar 

  25. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66(5), Article ID 056108, 7 pp. (2002)

  26. Li P., Zhai Z.: Well-posedness and regularity of generalized Navier–Stokes equations in some critical-spaces. J. Funct. Anal. 259(10), 2457–2519 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Miller K.S., Ross B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  28. Ozawa T.: Long range scattering for nonlinear Schrödinger equations in one space dimension. Commun. Math. Phys. 139(3), 479–493 (1991)

    Article  ADS  MATH  Google Scholar 

  29. Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999)

  30. Shatah J.: Normal forms and quadratic nonlinear Klein–Gordon equations. Commun. Pure Appl. Math. 38, 685–696 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shatah J., Zeng C.: Schrödinger maps and anti-ferromagnetic chains. Commun. Math. Phys. 262(2), 299–315 (2006)

    Article  ADS  MATH  Google Scholar 

  32. Stein, E.M., Shakarchi, R.: Functional Analysis. Introduction to Further Topics in Analysis. Princeton Lectures in Analysis, vol. 4. Princeton University Press, Princeton (2011)

  33. Wu S.: Almost global well posedness of the 2-D full water wave problem. Invent. Math. 177(1), 45–135 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nakao Hayashi.

Additional information

Communicated by Nader Masmoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, N., Naumkin, P.I. Large Time Asymptotics for the Fractional Order Cubic Nonlinear Schrödinger Equations. Ann. Henri Poincaré 18, 1025–1054 (2017). https://doi.org/10.1007/s00023-016-0502-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-016-0502-9

Navigation