Skip to main content
Log in

Optimal stock option schemes for managers

  • Original Paper
  • Published:
Review of Managerial Science Aims and scope Submit manuscript

Abstract

This paper analyzes which stock option scheme best aligns the interests of a firm’s manager and shareholders when both are risk-averse. We consider granting to the manager a basic fixed salary and one of the following four options: European, Parisian, Asian and American options. Choosing the strike of the options optimally, the shareholders can mostly implement a first best solution with all payoff schemes. The American option scheme best aligns the interests of the manager and the shareholders in the most common case in which the strike price equals the grant-date fair market value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Except Asian option scheme, all the other types of options can be found in the manager’s compensation scheme in practice. Some examples will be given in the subsequent sections.

  2. Cvitanić and Zhang (2013) provide an excellent overview of contract theory. The three classical cases for principal-agent problems are: Risk-sharing with symmetric information, hidden action and hidden type. In the first case, the principal, which is represented by the shareholders here, and the agent, the manager, have the same information and can contract directly upon the agent’s actions. In this case a first-best outcome can always be achieved and the principal and the agent have to agree on how to share the risk between themselves. An early paper discussing risk sharing is for example Borch (1962). In the second case, the actions of the agent cannot be directly observed or contracted upon. Here the principal influences the agent indirectly to pick certain actions by giving him incentives through a contract. Usually, only a second-best solution can be achieved. Holmström and Milgrom (1987) discuss this setup. In the third case, the principal does not know some key characteristics of the agent, e.g. his ability. Hence, the principal offers a menu of contracts. Under certain conditions the agent will reveal his true type. Generally, the principal only gets a third-best reward in this case. A hidden type example is Cvitanić and Zhang (2007). Our paper falls into the second category. We do not allow the shareholders to directly contract upon the risk of the company, but only to offer incentives through the different stock option schemes. However, we show that a first-best outcome can be achieved in this case.

  3. Usually in the literature the shareholders are assumed to be risk-neutral and can always sell their shares and walk away when the firm’s assets do not perform well. However, those shareholders who are able to decide on compensation scheme are large investors and probably interested in long-term investment in the firm. When the firm’s assets do not perform well, low asset price combined with high transaction costs might cause huge losses for these investors. Hence, they might choose to hold their shares until the terminal date rather than to sell them.

  4. The price \(\Uppi(x)\) denotes the value that the shareholders assign to a certain compensation package. As the shareholders are free to trade in any derivative and markets are assumed to be complete, the price \(\Uppi(x)\) can be calculated as the expectation of the discounted payoffs under the risk-neutral probability measure. However, as managers are not allowed to hedge their stock options, the complete market assumption does not hold for them and thus the price \(\Uppi(x)\) does in general not coincide with their subjective evaluation.

  5. Nevertheless, it might still be better for the shareholders to prefer a certain scheme, particularly under information asymmetry.

  6. Hereby we do not consider the case of an undiversified manager. According to Kanniainen (2010), in that case the option price becomes

    $$ e^{s T} e^{-\delta T} \Upphi(\tilde{\tilde{d}}_1) - K e^{-r T} \Upphi(\tilde{\tilde{d}}_2), \hbox{with} \quad \tilde{\tilde{d}}_{1/2} ={\frac{\ln {\frac{1}{K }} + (r -\delta-s \pm \frac{1}{2} \sigma^2) T }{\sigma \sqrt{T}}}, \quad s= \theta (1-\rho) \sigma $$

    where θ is the Sharpe ratio and ρ the correlation coefficient between the firm’s asset and the market portfolio. Some other references on the topic of ESOs and undiversification are e.g. Hall and Murphy (2002) and Jin (2002).

  7. A Brownian excursion {Y t ,0 ≤ t ≤ 1} has the same distribution as a Brownian motion {W t ,0 ≤ t ≤ 1 }, conditional on W t  > 0 for all 0 < t < 1 and W 1 = 0.

References

  • Anderluh J, Van der Weide H, (2004) Parisian options—the implied barrier concept. In: Bubak M, van Albada GD, Sloot PMA, Dongarra JJ (eds) Computational science—ICCS 2004, lecture notes in computer science. Springer, pp 851–858

  • Barone-Adesi G, Whaley RE (1987) Efficient analytic approximation of American option values. J Financ 42(2):301–320

    Google Scholar 

  • Bettis JC, Bizjak JM, Lemmon ML (2005) Exercise behavior, valuation, and the incentive effects of employee stock options. J Financ Econ 76:445–470

    Article  Google Scholar 

  • Borch K (1962) Equilibrium in a reinsurance market. Econometrica 30:424–444

    Article  Google Scholar 

  • Broadie M, Glasserman P (1997a) Pricing American-style securities using simulation. J Econ Dyn Control 21:1323–1352

    Article  Google Scholar 

  • Broadie M, Glasserman P (1997b) A stochastic mesh method for pricing high-dimensional American options. Working paper, Columbia Business School, Columbia University, New York

  • Cadenillas A, Cvitanic J, Zapatero F (2004) Leverage decision and manager compensation with choice of effort and volatility. J Financ Econ 73:71–92

    Article  Google Scholar 

  • Carpenter J (2000) Does option compensation increase managerial risk appetite? J Financ 55:2311–2331

    Article  Google Scholar 

  • Chen A, Pelger M, Sandmann K (2013) New performance-vested stock option schemes. Appl Financ Econ 23(8):709–727

    Article  Google Scholar 

  • Cvitanić J, Zhang J (2007) Optimal compensation with adverse selection and dynamic actions. Math Financ Econ 1:21–55

    Article  Google Scholar 

  • Cvitanić J, Zhang J (2013) Contract theory in continuous time models. Springer, Berlin

    Book  Google Scholar 

  • Datta S, Iskanda-Datta M, Raman K (2001) Executive compensation and corporate acquisition decisions. J Financ 56:2299–2336

    Article  Google Scholar 

  • Defusco RA, Johnson RR, Zorn TS (1990) The effect of executive stock option plans on stockholders and bondholders. J Financ 45:617–627

    Article  Google Scholar 

  • Dybvig PH, Loewenstein M (2003) Employee reload options: pricing, hedging, and optimal exercise. Rev Financ Stud 16:145–171

    Article  Google Scholar 

  • Feltham G, Wu M (2001) Incentive efficiency of stock versus options. Rev Account Stud 6:7–28

    Article  Google Scholar 

  • Garvey GT, Mawani A (2007) Executive stock options and dynamic risk-taking incentives. Manag Financ 33:281–288

    Google Scholar 

  • Gomez-Mejia L, Wiseman RM (1997) Reframing executive compensation: an assessment and outlook. J Manag 23(3):291–374

    Google Scholar 

  • Hall BJ, Murphy KJ (2000) Optimal exercise prices for executive stock options. Am Econ Rev 90(2), Papers and Proceedings of the one hundred twelfth annual meeting of the American economic association (May 2000), pp 209–214

    Google Scholar 

  • Hall BJ, Murphy KJ (2002) Stock options for undiversified executives. J Account Econ 33:3–42

    Article  Google Scholar 

  • Hall BJ, Murphy KJ (2003) The trouble with stock options. J Econ Perspect 17:49–70

    Article  Google Scholar 

  • He Z, Wei B, Yu J (2011) Permanent risk and dynamic incentives. Working paper

  • Hemmer T, Kim O, Verrecchia RE (2000) Introducing convexity into optimal compensation contracts. J Account Econ 28:307–327

    Article  Google Scholar 

  • Holmstöm B, Milgrom P (1987) Aggregation and linearity in the provision of intertemporal incentives. Econometrica 55:303–328

    Article  Google Scholar 

  • Jin L (2002) CEO compensation, diversification, and incentives. J Financ Econ 66:29–63

    Article  Google Scholar 

  • Johnson SA, Tian YS (2000) The value and incentive effects of nontraditional executive stock option plans. J Financ Econ 57:3–34

    Article  Google Scholar 

  • Ju N, Wan X (2010) Optimal compensation and pay-performance sensitivity in a continuous-time principal-agent model. Working paper, HKUST

  • Kadan O, Swinkels JM (2008) Stocks or options? Moral hazard, firm viability, and the design of compensation contracts. Rev Financ Stud 21(1):451–482

    Article  Google Scholar 

  • Kanniainen J (2010) Risk incentives of executive stock options for undiversified managers. Rev Manag Sci 4:7–32

    Article  Google Scholar 

  • Lambert RA, Lanen WN, Larcker DF (1989) Executive stock option plans and corporate dividend policy. J Financ Quant Anal 24:409–425

    Article  Google Scholar 

  • Longstaff F, Schwartz E (2001) Valuing American options by simulation: a simple least-squares approach. Rev Financ Stud 14:113–148

    Article  Google Scholar 

  • Meulbroek LK (2001) The efficiency of equity-linked compensation: understanding the full cost of awarding executive stock options. Financ Manag 30:5–44

    Article  Google Scholar 

  • Milgrom P, Roberts J (1992) Economics, organization and management. Prentice-Hall, London

    Google Scholar 

  • Murphy (1999) Executive compensation, chapter 38. In: Handbook of labor economics, vol 3, Part B. pp 2485–2563

  • Rajgopal S, Shevlin S (2002) Empirical evidence on the relation between stock option compensation and risk taking. J Account Econ 2(33):145–171

    Article  Google Scholar 

  • Ross S (2004) Compensation, incentives and the duality of risk aversion and riskiness. J Financ 59(1):207–225

    Google Scholar 

  • Sharpe WF (1970) Portfolio theory and capital markets. McGraw-Hill, New York

    Google Scholar 

  • Sicar R, Xiong W (2007) A general framework for evaluating executive stock options. J Econ Dyn Control 31:2317–2349

    Article  Google Scholar 

  • Tian YS (2004) Too much of a good incentive? The case of executive stock options. J Banking Financ 28:1225–1245

    Article  Google Scholar 

  • Tsitsiklis J, Van Roy B (1999) Optimal stopping of Markov processes: Hilbert space theory, approximation algorithms, and an application to pricing financial derivatives. IEEE Trans Autom Control 44:1840–1851

    Article  Google Scholar 

  • Tsitsiklis J, Van Roy B (2000) Regression methods for pricing complex American-style options. Working paper. Laboratory for Information and Decision Systems, MIT, Cambridge

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Chen.

Appendix

Appendix

1.1 Partial derivatives of the first two moments of a European call

The derivatives of the first moments with respect to μ and σ are as follows:

$$ \begin{aligned} {\frac{\partial E[ h(S(T))]}{\partial \mu}} &= T \cdot e^{(\mu-\delta) T} \cdot \Upphi(d_1 ) + \left(e^{(\mu-\delta) T} \phi(d_1) - K \phi(d_2)\right) {\frac{\partial d_1}{\partial \mu}} = T \cdot e^{(\mu-\delta) T} \cdot \Upphi(d_1 ) \\ {\frac{\partial E[h(S(T))]}{\partial \sigma}} &= e^{(\mu-\delta) T} \phi(d_1) \left({\frac{\partial d_2}{\partial \sigma}} + \sqrt{T} \right) - K \phi(d_2) {\frac{\partial d_2}{\partial \sigma}} = \sqrt{T} \cdot e^{(\mu-\delta) T} \cdot \phi(d_1). \end{aligned} $$

Hereby we have used \({\frac{\partial d_1}{\partial \mu}}={\frac{\partial d_2}{\partial \mu}}={\frac{\sqrt{T}}{\sigma}};\, {\frac{\partial d_1}{\partial \sigma}}={\frac{\partial d_2}{\partial \sigma}} + \sqrt{T}\); and \(\phi(d_1)= K e^{-(\mu-\delta) T} \phi(d_2)\), with \(\phi(x)\equiv {\frac{1}{\sqrt{2 \pi} }} e^{-x^2/2}.\) The following two derivatives are:

$$ \begin{aligned} {\frac{\partial E[ h^2(S(T))]}{\partial \mu}} &= 2 T \cdot e^{2 (\mu-\delta) T+\sigma^2 T} \Upphi(d_3) - 2 K T \cdot e^{(\mu-\delta) T} \Upphi(d_1) \\ & \quad + \left(e^{2 (\mu-\delta) T+\sigma^2 T} \phi(d_3) {\frac{\partial d_3}{\partial \mu}} +K^2 \phi(d_2){\frac{\partial d_2}{\partial \mu}} - 2 K e^{(\mu-\delta) T} \phi(d_1) {\frac{\partial d_1}{\partial \mu}} \right) \\ &= 2 T \cdot e^{2 (\mu-\delta) T+\sigma^2 T} \Upphi(d_3) - 2 K T \cdot e^{(\mu-\delta) T} \Upphi(d_1) \\ {\frac{\partial E[h^2(S(T))]}{\partial \sigma}} &= 2 \sigma T \cdot e^{2 (\mu-\delta) T+\sigma^2 T} \Upphi(d_3) \\ & \quad + e^{2 (\mu-\delta) T+\sigma^2 T} \phi(d_3) {\frac{\partial d_3}{\partial \sigma}} +K^2 \phi(d_2){\frac{\partial d_2}{\partial \sigma}} - 2 K \cdot e^{(\mu-\delta) T} \phi(d_1) {\frac{\partial d_1}{\partial \sigma}} \\ &= 2 \sigma T e^{2 (\mu-\delta) T+\sigma^2 T} \Upphi(d_3). \end{aligned} $$

Hereby we have used the fact that \({\frac{\partial d_1}{\partial \mu}}={\frac{\partial d_2}{\partial \mu}}={\frac{\partial d_3}{\partial \mu}}={\frac{\sqrt{T}}{\sigma}}\); \({\frac{\partial d_3}{\partial \sigma}}={\frac{\partial d_2}{\partial \sigma}} + 2 \sqrt{T}\) and \(\phi(d_1)= K e^{-(\mu-\delta) T} \phi(d_2),\,\phi(d_3)=K^2 e^{-2 (\mu-\delta) T- \sigma^{2T}} \phi(d_2)\). The optimal volatility results from numerically solving

$$ \begin{aligned} \,&\left(\left(1+2 \lambda_{eff} E[h] \right)T e^{(\mu-\delta) T} \Upphi(d_1 ) -\lambda_{eff} \left(2 T e^{2 (\mu-\delta) T+\sigma^2 T} \Upphi(d_3) - 2 K T e^{(\mu-\delta) T} \Upphi(d_1)\right)\right) {\frac{\partial \mu}{\partial \sigma }} \\ \,&\quad+\left(\left(1+2 \lambda_{eff} E[h] \right)\sqrt{T} e^{(\mu-\delta) T} \phi(d_1)-\lambda_{eff} \left( 2 \sigma T e^{2 (\mu-\delta) T+\sigma^2 T} \Upphi(d_3)\right)\right)=0. \end{aligned} $$

1.2 First two moments and the corresponding derivatives under Parisian scheme

Using the implied barrier concept implies that

$$ E[h(S(T))] = E\left[\left[{\frac{S(T)}{S(0)}} - K\right]^+ 1_{\{T_B^+<T\}}\right] \approx E\left[\left[{\frac{S(T)}{S(0)}} - K\right]^+ 1_{\{\tau_{B^*} < T\}}\right]. $$

Note that

$$ \begin{aligned} &S_t > B_t^* \Leftrightarrow W_t + m t > {\frac{1}{\sigma}} \ln {\frac{B_0^*}{S_0}} := b \\ &{\frac{S_T}{S_0}} > K \Leftrightarrow W_T + m T > {\frac{1}{\sigma}} \ln (K e^{-g T}) := k \end{aligned} $$

with \(m= {\frac{1}{\sigma}} (\mu -\delta -g -\frac{1}{2} \sigma^2).\) Consequently, we can rewrite

$$ \begin{aligned} \,& E\left[\left[{\frac{S(T)}{S(0)}}- K\right]^+ 1_{\{\tau_{B^*} < T\}}\right] \\ &\quad= E\left[\left(\exp\{\sigma (W_T + m T )\} e^{g T}-K \right) 1_{\{W_T + m T > k, \sup_{t \in [0,T]} W_t + m t \geq b \}}\right]\\ &\quad= \tilde{E} \left[\exp\{m Z_T- {\frac{1}{2}} m^2 T\} \left(\exp\{\sigma Z_T \} e^{g T}-K \right) 1_{\{Z_T > k, \sup_{t \in [0,T]} Z_t \geq b \}}\right] \end{aligned} $$

with Z t  = W t  + mt and \(\tilde{E}\) is the expectation taken under the new probability measure \(\tilde{P}\) which is defined by

$$ \frac{{d P}}{{d \tilde{P}}} \Big|_{{{\mathcal{F}}}_t} = \exp\left\{ m Z_t - \frac{1}{2} m^2 t \right\}. $$

We proceed with the calculation of the expected value by distinguishing two cases: k ≥ b (K S 0 ≥ B * T ) and k < b (K S 0 < B * T ). For k ≥ b, the above expectation is reduced to

$$ \begin{aligned} \,& \tilde{E} \left[\exp\{m Z_T- {\frac{1}{2}} m^2 T\} \left(\exp\{\sigma Z_T \} e^{g T}-K \right) 1_{\{Z_T > k \}}\right]\\ &\quad = e^{(\mu-\delta) T} \Upphi\left({\frac{\ln{\frac{1}{K}} + (\mu-\delta+\frac{1}{2} \sigma^2 ) T}{\sigma \sqrt{T} }} \right) - K \Upphi\left({\frac{\ln{\frac{1}{K}} + (\mu-\delta-\frac{1}{2} \sigma^2 ) T}{\sigma \sqrt{T} }} \right). \end{aligned} $$

This corresponds to the formula obtained in the case of the European call. For k < b, we can use the equivalence of the following events:

$$ \begin{aligned} & 1_{\left\{Z_T > k, \sup_{t \in [0,T]} Z_t \geq b \right\}} \\ &\quad = 1_{\left\{\sup_{t \in [0,T]} Z_t \geq b \right\}} -1_{\left\{Z_T \leq k, \sup_{t \in [0,T]} Z_t \geq b\right\}} \\ &\quad= 1_{\left\{Z_T \geq b, \sup_{t \in [0,T]} Z_t \geq b \right\}}+1_{\left\{Z_T < b, \sup_{t \in [0,T]} Z_t \geq b \right\}} -1_{\left\{Z_T \leq k, \sup_{t \in [0,T]} Z_t \geq b \right\}}. \\ \end{aligned} $$

The above decomposition combined with the reflection principle leads to

$$ \begin{aligned} \,& \tilde{E} \left[\exp\{m Z_T- {\frac{1}{2}} m^2 T\} \left(\exp\{\sigma Z_T \} e^{g T}-K \right) 1_{\{Z_T > k, \sup_{t \in [0,T]} Z_t \geq b \}}\right]\\ &\quad = \tilde{E} \left[\exp\{m Z_T- {\frac{1}{2}} m^2 T\} \left(\exp\{\sigma Z_T \} e^{g T}-K \right) 1_{\{Z_T > b\}}\right]\\ &\quad +\tilde{E} \left[\exp\{m (2 b -Z_T)- {\frac{1}{2}} m^2 T\} \left(\exp\{\sigma (2 b -Z_T) \} e^{g T}-K \right) 1_{\{Z_T > b\}}\right]\\ &\quad -\tilde{E} \left[\exp\{m (2 b -Z_T)- {\frac{1}{2}} m^2 T\} \left(\exp\{\sigma (2 b -Z_T) \} e^{g T}-K \right) 1_{\{Z_T > 2 b- K \}}\right]\\ &\quad = e^{(\mu-\delta) T} \Upphi\left(-{\frac{b}{\sqrt{T}}} +(m+\sigma )\sqrt{T} \right) - K \Upphi\left(-{\frac{b}{\sqrt{T}}} +m \sqrt{T} \right)\\ &\quad +e^{(\mu-\delta) T} \left({\frac{B_0^*}{S_0}}\right)^{{\frac{2(\mu-\delta-g)}{\sigma^2}}+{1}} \Upphi\left(-{\frac{b}{\sqrt{T}}} -(m+\sigma )\sqrt{T} \right) - K \left({\frac{B_0^*}{S_0}}\right)^{{\frac{2m}{\sigma}}} \Upphi\left(-{\frac{b}{\sqrt{T}}} -m \sqrt{T} \right) \\ &\quad - e^{(\mu-\delta) T} \left({\frac{B_0^*}{S_0}}\right)^{{\frac{2(\mu-\delta-g)}{\sigma^2}}+{1}} \Upphi\left(-{\frac{2 b- k}{\sqrt{T}}} -(m+\sigma )\sqrt{T} \right) +K \left({\frac{B_0^*}{S_0}}\right)^{{\frac{2m}{\sigma}}} \Upphi\left(-{\frac{2 b- k}{\sqrt{T}}} -m \sqrt{T} \right). \end{aligned} $$
(7.1)

To derive the second moment of h(S(T)), we can follow the same steps as above. First note that

$$ \begin{aligned} \,& E\left[\left(\left[{\frac{S(T)}{S(0)}}- K\right]^+\right)^2 1_{\{\tau_{B^*} < T\}}\right] \\ &\quad = E\left[\left(e^{2 \sigma (W_T + m T )} e^{2 g T}+K^2 -2 K \exp\{\sigma (W_T + m T )\} e^{g T} \right) 1_{\{W_T + m T > k, \sup_{t \in [0,T]} W_t + m t \geq b \}}\right] \\ &\quad = \tilde{E} \Big[e^{m Z_T- {\frac{1}{2}} m^2 T} \left(\exp\{2 \sigma Z_T\} e^{2 g T}+K^2 -2 K \exp\{\sigma Z_T\} e^{g T} \right) \cdot 1_{\{Z_T > k, \sup_{t \in [0,T]} Z_t \geq b \}}\Big]. \end{aligned} $$

Again we distinguish between k ≥ b and k < b. For k ≥ b, we obtain the same formula as in the case of the European call:

$$ \begin{aligned} & E\left[\left(\left[{\frac{S(T)}{S(0)}}- K\right]^+\right)^2 1_{\{\tau_{B^*} < T\}}\right] \\ &= e^{2 ( \mu-\delta) T+ \sigma^2 T} \Upphi\left({\frac{\ln{\frac{1}{K}} + (\mu-\delta+\frac{3}{2} \sigma^2) T}{\sigma \sqrt{T} }} \right) + K^2 \Upphi\left({\frac{\ln{\frac{1}{K}} + (\mu-\delta-\frac{1}{2} \sigma^2 ) T}{\sigma \sqrt{T} }} \right) \\ &\quad - 2 K e^{(\mu-\delta) T} \Upphi\left({\frac{\ln{\frac{1}{K}} + (\mu-\delta+\frac{1}{2} \sigma^2 ) T}{\sigma \sqrt{T} }} \right). \end{aligned} $$

For k < b, we can use the same decomposition of the indicator function which leads to the following results:

$$ \begin{aligned} \,& \tilde{E} \left[e^{m Z_T- {\frac{1}{2}} m^2 T} \left(\exp\{2 \sigma Z_T\} e^{2 g T}+K^2 -2 K \exp\{\sigma Z_T\} e^{g T} \right) \cdot 1_{\{Z_T > k, \sup_{t \in [0,T]} Z_t \geq b \}}\right] \\ &\quad = -2 K e^{(\mu-\delta) T} \Upphi\left(-{\frac{b}{\sqrt{T}}} +(m+\sigma )\sqrt{T} \right) + K^2 \Upphi\left(-{\frac{b}{\sqrt{T}}} +m \sqrt{T} \right) \\ & \quad - 2 K e^{(\mu-\delta) T} \left({\frac{B_0^*}{S_0}}\right)^{{\frac{2(\mu-\delta-g)}{\sigma^2}}+{1}} \Upphi\left(-{\frac{b}{\sqrt{T}}} -(m+\sigma )\sqrt{T} \right)+ K^2 \left({\frac{B_0^*}{S_0}}\right)^{{\frac{2m}{\sigma}}} \Upphi\left(-{\frac{b}{\sqrt{T}}} -m \sqrt{T} \right) \\ &\quad + 2 K e^{(\mu-\delta) T} \left({\frac{B_0^*}{S_0}}\right)^{{\frac{2(\mu-\delta-g)}{\sigma^2}}+{1}} \Upphi\left(-{\frac{2 b- k}{\sqrt{T}}} -(m+\sigma )\sqrt{T} \right) -K^2 \left({\frac{B_0^*}{S_0}}\right)^{{\frac{2m}{\sigma}}} \Upphi\left(-{\frac{2 b- k}{\sqrt{T}}} -m \sqrt{T} \right) \\ &\quad +e^{2 (\mu-\delta) T + \sigma^2 T} \Upphi \left(-{\frac{b}{\sqrt{T}}} + (m+2 \sigma)\sqrt{T} \right) + e^{2 (\mu-\delta) T + \sigma^2 T} \left({\frac{B_0^*}{S_0}}\right)^{{\frac{2(m+2 \sigma)}{\sigma}}} \Upphi\left(-{\frac{b}{\sqrt{T}}} -(m+2 \sigma )\sqrt{T} \right) \\ &\quad - e^{2 (\mu-\delta) T + \sigma^2 T} \left({\frac{B_0^*}{S_0}}\right)^{{\frac{2(m+2 \sigma)}{\sigma}}} \Upphi\left(-{\frac{2 b- k}{\sqrt{T}}} -(m+2 \sigma )\sqrt{T} \right). \end{aligned} $$

The derivatives of the expectation with respect to μ or σ are given by the sum of the derivatives of each component in (7.1) with respect to μ or σ. Taking the derivative of the third component with respect to μ as an example, we obtain

$$ \begin{aligned} \,& {\frac{\partial}{\partial \mu}} \left(e^{(\mu-\delta) T} \left({\frac{B_0^*}{S_0}}\right)^{\frac{{2(m+\sigma)}}{ {\sigma}}} \Upphi\left(-{\frac{b}{\sqrt{T}}} -(m+\sigma )\sqrt{T} \right)\right) \\ & = \Upphi\left(-{\frac{b}{\sqrt{T}}} -(m+\sigma )\sqrt{T} \right) \Bigg[T e^{(\mu-\delta) T} \left({\frac{B_0^*}{S_0}}\right)^{{\frac{2(\mu-\delta-g)}{\sigma^2}}+1}\\ &\quad + e^{(\mu-\delta) T}\left({\frac{B_0^*}{S_0}}\right)^{{\frac{2(\mu-\delta-g)}{\sigma^2}}+1} \cdot \left(-{\frac{d^{3/2} e^{-m^2 d/2 } \sqrt{2 \pi} (\mu-\delta-g) m }{\sigma}}+ {\frac{2 \log {\frac{B_0^*}{S_0}}}{\sigma^2}}\right) \Bigg] \\ &\quad + e^{(\mu-\delta) T} \left({\frac{B_0^*}{S_0}}\right)^{{\frac{2(\mu-\delta-g)}{\sigma^2}}+1} \phi\left(-{\frac{b}{\sqrt{T}}} -(m+\sigma )\sqrt{T} \right) \left(-{\frac{\sqrt{T}}{\sigma}} + {\frac{m d^{3/2}e^{-m^2 d/2 } \sqrt{{\frac{\pi}{2}}} }{\sigma \sqrt{T}}} \right). \end{aligned} $$

The derivatives of the other components can be computed similarly. Note that the fact that the implied barrier B *0 is a function of μ and σ shall be taken into consideration when determining the corresponding derivatives.

Here the detailed calculations for the derivatives of the second moment are neglected. As we have learned from the European case, all the derivatives result in \({\frac{\partial U_{manager}}{\partial \mu}}\) and \({\frac{\partial U_{manager}}{\partial \sigma}}.\) With the help of

$$ {\frac{\partial U_{manager}}{\partial \mu}} {\frac{\partial \mu}{\partial \sigma}} + {\frac{\partial U_{manager}}{\partial \sigma}} =0, $$

we determine the optimal σ-level numerically.

1.3 American ESO scheme

Applying Barone-Adesi and Whaley (1987) straightforwardly in our context, we obtain the expected terminal payoff for the American option case by distinguishing between the following two cases:

$$ \begin{aligned} E \left[h^a(S_T)\right]= \left\{\begin{array}{ll} e^{r T}(1 -K), & \hbox{if } S_0 > S^* \\ E[h(S_T)] + e^{r T } {\frac{1}{S_0 }} A_2 \left(\frac{{S_0 }}{ {S^*}}\right)^{q_2}, & \hbox{if } S_0 < S^* \end{array}\right. \end{aligned} $$
(7.2)

with

$$ \begin{aligned} q_2 &=\frac{1}{2} \left(-\left({\frac{2 (\mu-\delta)}{\sigma^2}} -1\right) + \sqrt{\left({\frac{2 (\mu-\delta) }{\sigma^2}}-1\right)^2 + {\frac{8 r}{\sigma^2 (1-e^{-r T} )}} } \right) \\ A_2&= (S^*/q_2) \left(e^{(\mu-r-\delta) T}-e^{(\mu-r-\delta) T} \Upphi(d_1(S^*))\right) \\ d_1(S^*)&= {\frac{\ln {\frac{S^*}{S_0 K}}+(\mu -\delta +\frac{1}{2} \sigma^2 )T }{\sigma \sqrt{T}}}. \end{aligned} $$

And finally S * is determined implicitly by solving

$$ S^{*} - K \cdot S_0 = S_0 \left(e^{(\mu-r -\delta) T} \Upphi(d_1(S_0)) - K e^{-r T} \Upphi(d_2(S_0))\right) + (1-e^{(\mu-r -\delta) T} \Upphi(d_1(S^*) )) S^* /q_2. $$

In order to determine the second moment of the American option, we can first decompose the square of the European call option into the following two parts:

$$ \begin{aligned} \left(\left[S_T / S_0 - K \right]^+\right)^2 &= \left(\left(S_T/S_0\right)^2 +K^2 - 2 K S_T/S_0 \right) 1_{\left\{S_T > K \cdot S_0 \right\}} \\ &= \left[\left(S_T/S_0\right)^2 - K^2 \right]^+ - 2 K \left[S_T/S_0 - K \right]^{+}. \end{aligned} $$

The second term on the right-hand side is already determined, and now we can use the same technique to calculate the first term \( \left[\left(S_T/S_0\right)^2 - K^2 \right]^+. \) The expected payoff from the European option \( \left[\left(S_T/S_0\right)^2 - K^2 \right]^+ \) is given by

$$ \begin{aligned} E\left[ \left[\left(S_T/S_0\right)^2 - K^2 \right]^+\right] &= e^{(2 (\mu-\delta)+\sigma^2 ) T} \Upphi\left({\frac{1/K^2 +(2(\mu-\delta)T+3\sigma^2 )T}{2 \sigma \sqrt{T} }} \right) \\ &\quad - K^2 \Upphi\left({\frac{1/K^2 +(2(\mu-\delta)T-\sigma^2 )T}{2 \sigma \sqrt{T} }} \right). \end{aligned} $$
(7.3)

For δ > 0, we need to distinguish between two cases:

$$ \begin{aligned} \,& E \left[\left[\left(S_T/S_0\right)^2 - K^2 \right]^+\right]\\ & \quad = \left\{\begin{array}{ll} e^{ r T}(1 -K^2), & \hbox{if } S_0 > S^* \\ E\left[ \left[\left(S_T/S_0\right)^2 - K^2 \right]^+\right] + {\frac{1}{S_0^2 }} \tilde{A}_2 \left({\frac{S_0^2 }{(S^*)^2}}\right)^{q_2}, & \hbox{if } S_0 < S^{*} \end{array}\right. \end{aligned} $$
(7.4)

with

$$ \begin{aligned} q_2 &=\frac{1}{2} \left(-\left({\frac{( 2(2\mu+\sigma^2-2\delta)}{4 \sigma^2}} -1\right) + \sqrt{\left({\frac{( 2(2\mu+\sigma^2-2\delta)}{4 \sigma^2}} -1\right)^2 + {\frac{8 r }{4 \sigma^2 (1-e^{-r T} )}} } \right) \\ \tilde{A}_2&= (S^*)^2/q_2 (e^{(2 \mu-2 \delta+\sigma^2-r) T}-e^{(2 \mu-2 \delta+\sigma^2-r) T} \Upphi(d_1(S^*))) \\ d_1(S^*)&= {\frac{\ln {\frac{(S^*)^2}{S_0^2 K^2 }}+(2(\mu -\delta) +3 \sigma^2 )T }{2 \sigma \sqrt{T}}}. \end{aligned} $$

And finally S * is determined implicitly by solving

$$ \begin{aligned} & (S^*)^2 - K^2 \cdot S_0^2 \\ & \quad = S_0^2 e^{-r T}E\left[ \left[\left(S_T/S_0\right)^2 - K^2 \right]^+\right] + (1-e^{(2 \mu+\sigma^2 -2 \delta-r ) T} \Upphi(d_1(S^*) )) (S^*)^2 /q_2. \end{aligned} $$

Finally, the price of the American option is given by

$$ \begin{aligned} E_{Q}[e^{-r T}h^a(S_T)]= \left\{\begin{array}{ll} 1-K, & \hbox{if } S_0 > S^* \\ E_Q[e^{-r T} h(S_T)] + {\frac{1}{S_0}} A_2 \left({\frac{S_0 }{S^*}}\right)^{q_2}, & \hbox{if } S_0 < S^{*} \end{array}\right. \end{aligned} $$
(7.5)

with

$$ \begin{aligned} q_2 &=\frac{1}{2} \left(-\left({\frac{2 (r-\delta)}{\sigma^2}} -1\right) + \sqrt{\left({\frac{2 (r-\delta) }{\sigma^2}}-1\right)^2 + {\frac{8 r }{\sigma^2 (1-e^{-r T} )}} } \right) \\ A_2&= (S^*/q_2) (1-e^{-\delta T} \Upphi(d_1(S^*))) \\ \tilde{d}_1(S^*)&= {\frac{\ln {\frac{S^*}{S_0 K}}+(r -\delta +\frac{1}{2} \sigma^2 )T }{\sigma \sqrt{T}}}. \end{aligned} $$

And finally S * is determined implicitly by solving

$$ S^* - K \cdot S_0 = S_0 \left( e^{-\delta T} \Upphi\left(\tilde{d}_1(S_0)\right) - K \Upphi\left(\tilde{d}_2(S_0)\right)\right) + (1-e^{-\delta T} \Upphi\left(\tilde{d}_1(S^*))\right) S^* /q_2. $$

1.4 Concavity of U share

Proposition 1

Assume \(T \geq {\frac{1}{2}},\, \mu=r+\theta \cdot \sigma > \delta,\, r, \delta, \sigma, \theta \geq 0\) and λ > 0. Then

$$ U_{share} \left(r + \theta \cdot \sigma,\sigma\right) $$

is strictly concave.

Proof

The expected utility is given by

$$ U_{share} (\mu,\sigma) = e^{(\mu-\delta) T} - \lambda_S e^{2( \mu-\delta) T} \left(e^{\sigma^2 T} -1\right) \quad \hbox{with } \mu = r +\theta \cdot \sigma $$

It is sufficient to show that the second derivative of this expression with respect to σ is smaller than 0, which is equivalent to

$$ \begin{aligned} & - e^{- \delta} T \left ( e^{r + \sigma \cdot \theta}\theta^2 - 4 e^{\delta + 2 (-\delta + r + \sigma \cdot \theta)T} \lambda \theta^2 T \right) \\ &-2 e^{- \delta} T \left(e^{\delta + \sigma^2 T + 2 (-\delta + r + \sigma \cdot \theta)T} \lambda \left( 1 + 2 \sigma^2 + 4 \sigma \cdot \theta \cdot T + 2\theta^2 T \right) \right) <0. \end{aligned} $$

This is equivalent to

$$ 2 e^{\sigma^2T} \left ( 1 + 2 \sigma^2 +4 \sigma \cdot \theta \cdot T + 2 \theta^2 T \right) + 4 \theta^2 T > e^{( \sigma \cdot \theta + r - \delta) (1-2T) } \theta^{2}. $$

Using the above assumptions on the parameters we can show that the LHS is larger than θ 2 and this is also larger than the RHS, which proves the proposition. □

The above proposition implies the following lemma:

Corollary 1

For a given Sharpe ratio θ there exists a unique \(\tilde \sigma(\theta),\) that maximizes the utility of the shareholders:

$$ \tilde \sigma(\theta) =\hbox{argmax}_{\sigma} U_{share} (r + \theta \cdot \sigma, \sigma). $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, A., Pelger, M. Optimal stock option schemes for managers. Rev Manag Sci 8, 437–464 (2014). https://doi.org/10.1007/s11846-013-0111-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11846-013-0111-7

Keywords

JEL Classification

Navigation