Skip to main content
Log in

Crystallinity and Luminescence of Strontium Aluminates for Digital Optical Data Storage Using NIR Excitation

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Stably luminescent strontium aluminates (SAO) co-doped with Eu2+ and Dy3+ were synthesized by a solid-state reaction for digital optical data storage applications. The SAOs were composed of monoclinic SrAl2O4 and hexagonal SrAl12O19 in nearly identical composition ratios. The substitution of Dy3+ for Sr2+ decreased the high binding energy components of Sr 3d and Al 2p while decreasing the phosphor luminescence. However, co-doping with Dy3+ improved the persistent luminescence of Eu2+. When the phosphor was heated to 110°C, the luminescence intensity decreased by only 10.6%. Further, no change in the emission color was noted when the phosphor was placed in water and heated at 50°C for 20 min. The luminescence intensity of the phosphor changed with the switching of the optical stimulation; the higher the switching frequency, the better the optical storage performance. This indicates the promise of the polymorph SAO:Eu2+, Dy3+ for digital optical data storage applications utilizing near-infrared excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data available upon request.

References

  1. S. Xiong and D. Liang, JOM 75, 859 (2023).

    Article  Google Scholar 

  2. Y. Sheng, L. Ming, L. Liu, P. Lin, J. Shi, L. Song, and Y. Zhang, J. Rare Earths 40, 1432 (2022).

    Article  Google Scholar 

  3. G. Krieke, G. Doke, A. Antuzevics, I. Pudza, A. Kuzmin, and E. Welter, J. Alloys Compd. 922, 166312 (2022).

    Article  Google Scholar 

  4. Z. Dai, X. Mao, Q. Liu, D. Zhu, H. Chen, T. Xie, J. Xu, D. Hreniak, M. Nikl, and J. Li, Opt. Mater. 125, 112127 (2022).

    Article  Google Scholar 

  5. D. Zhao, S.-R. Zhang, R.-J. Zhang, B.-Z. Liu, and Q.-X. Yao, Chem. Eng. J. 428, 131023 (2022).

    Article  Google Scholar 

  6. M.A. Sikandar, W. Ahmad, M.H. Khan, F. Ali, and M. Waseem, Constr. Build. Mater. 228, 116823 (2019).

    Article  Google Scholar 

  7. T. Yao, G. Dong, S. Qian, Y. Cui, X. Chen, T. Tan, and L. Li, Sens. Actuators, B 357, 131470 (2022).

    Article  Google Scholar 

  8. H. Jiang, L. Liu, K. Yu, X. Yin, S. Zheng, L. Song, J. Shi, and Y. Zhang, J. Rare Earths 40, 1389 (2022).

    Article  Google Scholar 

  9. S. Hu, Y. Yu, X. Wu, P. Hu, H. Cao, Q. Wu, Z. Tang, Y. Gao, and Y. Liu, J. Rare Earths 35, 120 (2017).

    Article  Google Scholar 

  10. M. Chang, W. Feng, L. Ding, H. Zhang, C. Dong, Y. Chen, and J. Shi, Bioact. Mater. 10, 131 (2022).

    Google Scholar 

  11. Z. Liu, B. Wang, K. Zhang, T. Liu, R. Zhang, and Q. Zeng, Ceram. Int. 48, 3274 (2022).

    Article  Google Scholar 

  12. J. Zhang, L. Yuan, Y. Jin, H. Wu, L. Chen, and Y. Hu, J. Lumin. 241, 118518 (2022).

    Article  Google Scholar 

  13. P. Li, Y. Tian, F. Huang, L. Lei, M. Cai, S. Xu, and J. Zhang, J. Eur. Ceram. Soc. 42, 5065 (2022).

    Article  Google Scholar 

  14. R. Hu, Y. Zhao, Y. Zhang, X. Wang, G. Li, and M. Deng, Appl. Mater. Today 26, 101376 (2022).

    Article  Google Scholar 

  15. H. Song, X. Wu, Y. Zhang, S. Xu, and B. Li, Heliyon 8, e10045 (2022).

    Article  Google Scholar 

  16. J. Wang, W. Chen, L. Peng, T. Han, C. Liu, Z. Zhou, Q. Qiang, F. Shen, J. Wang, and B. Liu, J. Lumin. 250, 119066 (2022).

    Article  Google Scholar 

  17. Z.-H. Zuo, Y.-Y. Peng, J. Li, X. Wang, Z.-Q. Liu, and Y. Chen, Chem. Eng. J. 446, 136976 (2022).

    Article  Google Scholar 

  18. S. Peng, L. Liu, L. Wang, R. Rong, L. Song, W. You, J. Shi, and Y. Zhang, J. Rare Earth 40, 1417 (2022).

    Article  Google Scholar 

  19. D. Gao, Q. Kuang, F. Gao, H. Xin, S. Yun, and Y. Wang, Mater. Today Phys. 27, 100765 (2022).

    Article  Google Scholar 

  20. S. Ding, P. Chen, H. Guo, P. Feng, Y. Zhou, Y. Wang, and J. Sun, Energy Chem. 69, 150 (2022).

    Article  Google Scholar 

  21. M. Zhang, M. Jia, T. Liang, Z. Wang, H. Xu, D. Duan, Y. Wei, and Z. Fu, J. Colloid Interface Sci. 608, 758 (2022).

    Article  Google Scholar 

  22. X.Y. Jin, Z.Y. Wang, H.Y. Xu, M.C. Jia, and Z.L. Fu, Mater. Today Chem. 24, 100771 (2022).

    Article  Google Scholar 

  23. X. Jin, Z. Wang, Y. Wei, and Z. Fu, J. Lumin. 249, 118937 (2022).

    Article  Google Scholar 

  24. X. Zhang, J. Zhang, and Q. Zhu, Opt. Mater. 125, 112100 (2022).

    Article  Google Scholar 

  25. A. Shoghian-Alanaghi, A.J. Zamharir, H. Aghajani, and A.T. Tabrizi, Min. Metall. Explor. 39, 1753 (2022).

    Google Scholar 

  26. A.G. Arbat, E.A. Fesaghandis, A.T. Tabrizi, and H. Aghajani, Trans. Indian Inst. Met. 73, 2355 (2020).

    Article  Google Scholar 

  27. S.S. Javaherian, H. Aghajani, and H. Tavakoli, Miner. Process. Extr. Metall. 127, 182 (2018).

    Google Scholar 

  28. R. Li, H. Cao, H. Li, D. Zhang, and C. Chang, Ceram. Int. 48, 20546 (2022).

    Article  Google Scholar 

  29. K. Asami, J. Ueda, and S. Tanabe, J. Lumin. 207, 246 (2019).

    Article  Google Scholar 

  30. Q. Gencel, A. Danish, M. Yilmaz, E. Erdogmus, M. Sutcu, T. Ozbakkaloglu, and A. Gholampour, Ceram. Int. 48, 33167 (2022).

    Article  Google Scholar 

  31. X. He, H. Zhang, F. Xie, C. Tao, H. Xu, and S. Zhong, Ceram. Int. 148, 19358 (2022).

    Article  Google Scholar 

  32. P. Feng, G. Li, H. Guo, D. Liu, Q. Ye, and Y. Wang, J. Phys. Chem. C 123, 3102 (2019).

    Article  Google Scholar 

  33. W. Wang, S. Yan, Y. Liang, D. Chen, F. Wang, J. Liu, Y. Zhang, K. Sun, and D. Tang, Inorg. Chem. Front. 8, 5149 (2021).

    Article  Google Scholar 

  34. Q. Liu, W. Wang, Z. Dai, V. Boiko, H. Chen, X. Liu, D. Zhu, J. Xu, D. Hreniak, and J. Li, J. Rare Earths 40, 1699 (2022).

    Article  Google Scholar 

  35. Y. Yegane, H. Khalili, Z. Talebi, and J. Non-Cryst, Solids 585, 121521 (2022).

    Google Scholar 

  36. R.E. Rojas-Hernandez, F. Rubio-Marcos, A. Serrano, I. Hussainova, and J.F. Fernandez, J. Eur. Ceram. Soc. 40, 1677 (2020).

    Article  Google Scholar 

  37. H. Du, W. Shan, L. Wang, D. Xu, H. Yin, Y. Chen, and D. Guo, J. Lumin. 176, 272 (2016).

    Article  Google Scholar 

  38. R.E. Rojas-Hernandez, F. Rubio-Marcos, M.V.D.S. Rezende, M.Á. Rodriguez, A. Serrano, Á. Muñoz-Noval, and J.F. Fernandez, Mater. Des. 108, 354 (2016).

    Article  Google Scholar 

  39. V. Liepina, D. Millers, and K. Smits, J. Lumin. 185, 151 (2017).

    Article  Google Scholar 

  40. H. Wu, M. Wang, L. Huai, W. Wang, J. Zhang, and Y. Wang, Nano Energy 90, 106546 (2021).

    Article  Google Scholar 

  41. C. Wang, Y. Jin, J. Zhang, X. Li, H. Wu, R. Zhang, Q. Yao, and Y. Hu, Chem. Eng. J. 453, 139558 (2023).

    Article  Google Scholar 

  42. B. Wang, Z. Chen, X. Li, J. Zhou, and Q. Zeng, J. Alloys Compd. 812, 152119 (2020).

    Article  Google Scholar 

  43. Y. Lv, C. Guo, S. Zhang, Z. Li, R. Xie, L. Xiong, H. Wu, X. Lin, and M. Wang, Ceram. Int. 49, 40766 (2023).

    Article  Google Scholar 

  44. S-H. Yang, C-H. Wang, K.-C. Zhan, and C.-C. Ho, in 2023 9th International Conference on Applied System Innovation (ICASI), Chiba, Japan, 98 (2023).

  45. M. Volhard, L. Yu, D.D. Engelsen, G.R. Fern, T.G. Ireland, and J. Silver, Opt. Mater. Express 10, 1951 (2020).

    Article  Google Scholar 

  46. L.L. Yu, D.D. Engelsen, J. Gorobez, G.R. Fern, T.G. Ireland, C. Frampton, and J. Silver, Opt. Mater. Express 9, 2175 (2019).

    Article  Google Scholar 

  47. S.-H. Yang, Y.-C. Lee, and Y.-C. Hung, Ceram. Int. 44, 11665 (2018).

    Article  Google Scholar 

  48. J. Li, E.A. Medina, J.K. Stalick, A.W. Sleight, and M.A. Subramanian, Z. Naturforsch. 71, 475 (2016).

    Article  Google Scholar 

  49. S. Chawla and A. Yadav, Mater. Chem. Phys. 122, 582 (2010).

    Article  Google Scholar 

  50. R.P. Vasquez, Surf. Sci. Spectra 1, 24 (1992).

    Article  Google Scholar 

  51. U. Kumar and S. Upadhyay, Mater. Res. Express 6, 055805 (2019).

    Article  Google Scholar 

  52. L. Yang, S. Fu, K. Leng, Q. Tang, Z. Wu, K. Yi, and X. Zhu, Open Ceram. 9, 100238 (2022).

    Article  Google Scholar 

  53. H. Xie, H. Huang, N. Cao, C. Zhou, D. Niu, and Y. Gao, Phys. B 477, 14 (2015).

    Article  Google Scholar 

  54. S. Gültekin, S. Yıldırım, O. Yılmaz, İÇ. Keskin, M.İ Katı, and E. Çelikf, J. Lumin. 206, 59 (2019).

    Article  Google Scholar 

  55. S.G. Menon, K.S. Choudhari, S.A. Shivashankar, S. Chidangil, and S.D. Kulkarn, New J. Chem. 41, 5420 (2017).

    Article  Google Scholar 

  56. S.N. Ogugua, O.M. Ntwaeaborwa, and H.C. Swart, Bol. Soc. Esp. Cerám. Vidr. 60, 147 (2021).

    Article  Google Scholar 

  57. D. Zhang, C. Du, J. Chen, Q. Shi, Q. Wang, S. Li, W. Wang, and X. Yan, J. Sol-Gel Sci. Technol. 88, 22 (2018).

    Article  Google Scholar 

  58. M.Y.A. Yagoub, H.C. Swart, and E. Coetsee, Vacuum 191, 110362 (2021).

    Article  Google Scholar 

  59. Neharika, V. Kumar, J. Sharma, O.M. Ntwaeaborwa, and H.C. Swart, Adv. Mater. Lett. 6, 402 (2015).

    Article  Google Scholar 

  60. K. Gopinath, M. Chinnadurai, N.P. Devi, K. Bhakyaraj, S. Kumaraguru, T. Baranisri, A. Sudha, M. Zeeshan, A. Arumugam, M. Govindarajan, N.S. Alharbi, S. Kadaikunnan, and G. Benelli, J. Cluster Sci. 28, 621 (2017).

    Article  Google Scholar 

  61. D. Wang, G. He, Z. Fang, L. Hao, Z. Sun, and Y. Liu, RSC Adv. 10, 938 (2020).

    Article  Google Scholar 

  62. G.E. Fidha, N. Bitri, F. Chaabouni, S. Acosta, F. Güell, C. Bittencourt, J. Casanova-Chafer, and E. Llobet, RSC Adv. 11, 24917 (2021).

    Article  Google Scholar 

  63. L.Q. Wu, Y.C. Li, S.Q. Li, Z.Z. Li, G.D. Tang, W.H. Qi, L.C. Xue, X.S. Ge, and L.L. Ding, AIP Adv. 5, 097210 (2015).

    Article  Google Scholar 

  64. N. Joshi, L.F. da Silva, F.M. Shimizu, V.R. Mastelaro, J.-C. M’Peko, L. Lin, and O.N. Oliveira Jr., Microchim. Acta 186, 418 (2019).

    Article  Google Scholar 

  65. H.-L. Guo, Q. Zhu, X.-L. Wu, Y.-F. Jiang, X. Xie, and A.-W. Xu, Nanoscale 7, 7216 (2015).

    Article  Google Scholar 

  66. R. Li, H. Cao, H. Li, D. Zhang, and C. Chang, Ceram. Int. 48, 20546 (2022).

    Article  Google Scholar 

  67. U. Guth, Kröger-Vinks notation of point defects, in Encyclopedia of Applied Electrochemistry, vol 1159. ed. by G. Kreysa, K.I. Ota, and R.F. Savinell (Springer, New York, 2014).

    Google Scholar 

  68. H.N. Van, B.T. Hoan, K.T. Nguyen, P.D. Tam, P.T. Huy, and V.-H. Pham, J. Electron. Mater. 47, 2964 (2018).

    Article  Google Scholar 

  69. S. Sharma, N. Brahme, D.P. Bisen, and P. Dewangan, Opt. Express 26, 29495 (2018).

    Article  Google Scholar 

  70. M. İlhan, İÇ. Keskin, and S. Gültekin, J. Electron. Mater. 49, 2436 (2020).

    Article  Google Scholar 

  71. S. Ding, P. Chen, H. Guo, P. Feng, Y. Zhou, Y. Wang, and J. Sun, J. Energy Chem. 69, 150 (2022).

    Article  Google Scholar 

  72. M. Zhang, M. Jia, T. Liang, Z. Wang, H. Xu, D. Duan, Y. Wei, and Z. Fu, J. Colloid Interface Sci. 608, 758 (2022).

    Article  Google Scholar 

  73. Y.-G. Yang, J.J. Sun, C.C. Qiu, R. Zhang, Y.-Y. Zhang, Q.-G. Li, X.-P. Wang, B. Liu, L.-S. Lv, and L. Wei, J. Electron. Mater. 50, 2761 (2021).

    Article  Google Scholar 

  74. V. Vitola, D. Millers, I. Bite, K. Smits, and A. Spustaka, Mater. Sci. Technol. 35, 1661 (2019).

    Article  Google Scholar 

  75. J. Liu, G. Li, H. Guo, D. Liu, P. Feng, and Y. Wang, RSC Adv. 8, 10246 (2018).

    Article  Google Scholar 

  76. H.F. Brito, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, and L.C.V. Rodrigues, Opt. Mater. Express 2, 371 (2012).

    Article  Google Scholar 

  77. T. Lécuyer, E. Teston, G. Ramirez-Garcia, T. Maldiney, B. Viana, J. Seguin, N. Mignet, D. Scherman, and C. Richard, Theranostics 6, 2488 (2016).

    Article  Google Scholar 

  78. K.V. den Eeckhout, P.F. Smet, and D. Poelman, Materials 3, 2536 (2010).

    Article  Google Scholar 

  79. Y. Guo, S.H. Park, B.C. Choi, J.H. Jeong, and J.H. Kim, J. Alloys Compd. 742, 159 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Science and Technology Council of the Republic of China, Taiwan, for financially supporting this research under contract No. NSTC 112-2221-E-992-050.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Hua Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SH., Wang, CH., Ho, CC. et al. Crystallinity and Luminescence of Strontium Aluminates for Digital Optical Data Storage Using NIR Excitation. JOM 76, 2468–2477 (2024). https://doi.org/10.1007/s11837-024-06463-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06463-z

Navigation