Skip to main content
Log in

Microstructures and Properties of AlCoCrNiFe High-Entropy Alloy Sintered by Hot Oscillating Pressing Under Different Sintering Times

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Powder metallurgy is an effective method for preparing high-performance powder high-entropy alloys (HEAs). Among them, the sintering time has an important effect on the microstructure, density, Vickers hardness, and corrosion resistance of AlCoCrNiFe HEAs sintered by hot oscillating pressing (HOP). Thus the effect of sintering time (0.5 h, 1 h, and 1.5 h) on the microstructure and properties of AlCoCrNiFe HEAs has been systematically investigated in this work. The results showed that the densities of HEAs alloys showed a linear relationship with the content of the FCC phase and sintering time. At the same sintering time, HOP could effectively promote the disappearance of the original particle boundary, improve the microstructure uniformity, and reduce the internal pores. The hardness and corrosion resistance properties were increased with increasing sintering time, and were better than those of the hot press (HP)-sintered samples. When the sintering time was 1.5 h, the density and hardness of a HOP-ed sample could reach 99.18% and 479.12 HV1, respectively, while the minimum corrosion current density and corrosion rate were only 6.5 μA/cm2 and 0.055 mm/year, respectively. Thus, the hardness and corrosion resistance properties of AlCoCrNiFe had been simultaneously enhanced. Therefore, we believe that appropriately increasing the sintering time is beneficial for improving the performance of HOP-ed HEAs alloys, but this does not mean that the sintering time can be endlessly increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 https://doi.org/10.1002/adem.200300567 (2004).

    Article  Google Scholar 

  2. D.B. Miracle and O.N. Senkov, Acta Mater. 122, 448 https://doi.org/10.1016/j.actamat.2016.08.081 (2017).

    Article  Google Scholar 

  3. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, and P.K. Liaw, Prog. Mater. Sci. 61, 1 https://doi.org/10.1016/j.pmatsci.2013.10.001 (2014).

    Article  Google Scholar 

  4. Y. Zhang, X. Yang, and P.K. Liaw, J. Occup. Med. 64, 838 https://doi.org/10.1007/s11837-012-0366-5 (2012).

    Article  Google Scholar 

  5. D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, and M.D. Uchic, Entropy 16, 494 https://doi.org/10.3390/e16010494 (2014).

    Article  Google Scholar 

  6. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science 345, 1153 https://doi.org/10.1126/science.1254581 (2014).

    Article  Google Scholar 

  7. Z. Li, K. Pradeep, Y. Deng, D. Raabe, and C. Tasan, Nature 534, 227 https://doi.org/10.1038/nature17981 (2016).

    Article  Google Scholar 

  8. X. Lim, Nature 533, 306 https://doi.org/10.1038/533306a (2016).

    Article  Google Scholar 

  9. Y. Lu, X. Gao, Y. Dong, T. Wang, H. Chen, H. Maob, Y. Zhao, H. Jiang, Z. Cao, T. Li, and S. Guo, Nanoscale 10, 1912 https://doi.org/10.1039/c7nr07281c (2018).

    Article  Google Scholar 

  10. Y. Shi, B. Yang, and P. Liaw, Metals 7, 43 https://doi.org/10.3390/met7020043 (2017).

    Article  Google Scholar 

  11. Y. Qiu, S. Thomas, M. Gibson, H. Fraser, and N. Birbilis, Npj Mater. Degrad. 1, 15 https://doi.org/10.1038/s41529-017-0009-y (2017).

    Article  Google Scholar 

  12. V. Chaudhary, R. Chaudhary, R. Banerjee, and R.V. Ramanujan, Mater. Today 49, 231 https://doi.org/10.1016/j.mattod.2021.03.018 (2021).

    Article  Google Scholar 

  13. N.K. Katiyar, K. Biswas, J.-W. Yeh, S. Sharma, and C.S. Tiwary, Nano Energy 88, 106261 https://doi.org/10.1016/j.nanoen.2021.106261 (2021).

    Article  Google Scholar 

  14. K. Li and W. Chen, Mater. Today Energy 20, 100638 https://doi.org/10.1016/j.mtener.2021.100638 (2021).

    Article  Google Scholar 

  15. Y. Wang and Y. Wang, Nano Energy 104(A), 107958 https://doi.org/10.1016/j.nanoen.2022.107958 (2022).

    Article  Google Scholar 

  16. K. Wang, J. Huang, H. Chen, Y. Wang, W. Yan, X. Yuan, S. Song, J. Zhang, and X. Sun, Electrochem. Energy Rev. 5, 17 https://doi.org/10.1007/s41918-022-00144-8 (2022).

    Article  Google Scholar 

  17. Z. Wang, J. You, Y. Zhao, R. Yao, G. Liu, J. Lu, and S. Zhao, J. Environ. Chem. Eng. 11, 109080 https://doi.org/10.1016/j.jece.2022.109080 (2023).

    Article  Google Scholar 

  18. J. Shen, Z. Hu, K. Chen, C. Chen, Y. Zhu, and C. Li, Mater. Today Nano 21, 100282 https://doi.org/10.1016/j.mtnano.2022.100282 (2023).

    Article  Google Scholar 

  19. F. Yang, J. Wang, Y. Zhang, Z. Wu, Z. Zhang, F. Zhao, J. Huot, J.G. Novakovic, and N. Novakovic, Int. J. Hydrog. Energy 47, 11236 https://doi.org/10.1016/j.ijhydene.2022.01.141 (2022).

    Article  Google Scholar 

  20. H.V. Rusakova, L.S. Fomenko, S.N. Smirnov, A.V. Podolskiy, Y.O. Shapovalov, E.D. Tabachnikova, M.A. Tikhonovsky, A.V. Levenets, M.J. Zehetbauer, and E. Schafler, Mater. Sci. Eng. A 828, 142116 https://doi.org/10.1016/j.msea.2021.142116 (2021).

    Article  Google Scholar 

  21. W. Ji, W.M. Wang, H. Wang, J.Y. Zhang, Y.C. Wang, F. Zhang, and Z.Y. Fu, Intermetallics 56, 24 https://doi.org/10.1016/j.intermet.2014.08.008 (2015).

    Article  Google Scholar 

  22. F. Müller, B. Gorr, H.J. Christ, H. Chen, A. Kauffmann, S. Laube, and M. Heilmaier, J. Alloys Compd. 842, 155726 https://doi.org/10.1016/j.jallcom.2020.155726 (2020).

    Article  Google Scholar 

  23. A. Faraji, M. Farvizi, T. Ebadzadeh, and H.S. Kim, Intermetallics 149, 107656 https://doi.org/10.1016/j.intermet.2022.107656 (2022).

    Article  Google Scholar 

  24. A.X. Lin-Vines, J.A. Wilson, A. Fraile, L.J. Evitts, M.J.D. Rushton, J.O. Astbury, W.E. Lee, and S.C. Middleburgh, Results Mater. 15, 100320 https://doi.org/10.1016/j.rinma.2022.100320 (2022).

    Article  Google Scholar 

  25. K. Gao, C.J. Zhao, W. Zhao, D.J. Sun, Y. Gao, Z.H. Wang, and L.N. An, Int. J. Refract. Metals Hard Mater. 114, 106241 https://doi.org/10.1016/j.ijrmhm.2023.106241 (2023).

    Article  Google Scholar 

  26. S. Güler, E.D. Alkan, and M. Alkan, J. Alloys Compd. 903, 163901 https://doi.org/10.1016/j.jallcom.2022.163901 (2022).

    Article  Google Scholar 

  27. Y.K. Kim, K.R. Lim, and K.A. Lee, Mater. Des. 227, 111761 https://doi.org/10.1016/j.matdes.2023.111761 (2023).

    Article  Google Scholar 

  28. H.X. Cheng, Z.Z. Liu, H. Luo, Z.M. Pan, X.F. Wang, Q.C. Zhao, X.H. Qi, and X.G. Li, Corros. Sci. 213, 110969 https://doi.org/10.1016/j.corsci.2023.110969 (2023).

    Article  Google Scholar 

  29. M.R. Toroghinejad, F. Ebrahimi, and A. Shabani, J. Mater. Res. Technol. 21, 3262 https://doi.org/10.1016/j.jmrt.2022.10.120 (2022).

    Article  Google Scholar 

  30. B. Ren, R.F. Zhao, A.Y. Jiang, and Y. Yu, Micron 158, 103291 https://doi.org/10.1016/j.micron.2022.103291 (2022).

    Article  Google Scholar 

  31. K. Gao, D.Y. Liu, D.J. Sun, Y. Gao, Z.H. Wang, and L.N. An, Intermetallics 154, 107802 https://doi.org/10.1016/j.intermet.2022.107802 (2023).

    Article  Google Scholar 

  32. S. Riva, A. Tudball, S. Mehraban, N.P. Lavery, S.G.R. Brown, and K.V. Yusenko, J. Alloys Compd. 730, 544 https://doi.org/10.1016/j.jallcom.2017.09.274 (2017).

    Article  Google Scholar 

  33. C.M. Lin and H.L. Tsai, Intermetallics 19, 288 https://doi.org/10.1016/j.intermet.2010.10.008 (2011).

    Article  Google Scholar 

  34. Z.H. Jin, H.H. Ge, W.W. Lin, Y.W. Zong, S.J. Liu, and J.M. Shi, Appl. Surf. Sci. 322, 47 https://doi.org/10.1016/j.apsusc.2014.09.205 (2014).

    Article  Google Scholar 

  35. Y.Z. Shi, L. Collins, N. Balke, P.K. Liaw, and B. Yang, Appl. Surf. Sci. 439, 533 https://doi.org/10.1016/j.apsusc.2018.01.047 (2018).

    Article  Google Scholar 

  36. Y.Z. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, and P.K. Liaw, Corros. Sci. 119, 33 https://doi.org/10.1016/j.corsci.2017.02.019 (2017).

    Article  Google Scholar 

  37. Y.Y. Chen, U.T. Hong, H.C. Shih, J.W. Yeh, and T. Duval, Corros. Sci. 47, 2679 https://doi.org/10.1016/j.corsci.2004.09.026 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This research work is supported by National Natural Science Foundation of China (51904277, 52374370, 52072201), the Opening Foundation of Key Laboratory of Advanced Manufacture Technology for Automobile Parts, Ministry of Education (2022 KLMT05), the Open Fund of Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology (202307A04), the Key Laboratory of materials and surface technology, Ministry of Education (No. xxx-2023-zd002), the State Key Laboratory of Metal Extrusion and Forging Equipment Technology, China National Heavy Machinery Research Institute Co,.Ltd (S2308100.W13), the Open Fund of Sichuan Province Engineering Technology Research Center of Powder Metallurgy, Chengdu University (SC-FMYJ2023-02), the Open Fund of Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering at Wuhan University of Science and Technology (MTMEOF2022B02), Training Program for Young Backbone Teachers in Colleges and University of Henan Province (2020GGJS171).

Author information

Authors and Affiliations

Authors

Contributions

Ka Gao: Investigation, Conceptualization, Writing-review & editing. Ziqian Wu: Resources, Writing-original draft. Chunyang Ren: Writing-review & editing. Yan Xiong: Investigation, Funding acquisition. Dejian Sun: Conceptualization, Investigation. Yang Gao: Methodology, Formal analysis, Investigation. Linan An: Writing-review & editing, Funding acquisition.

Corresponding authors

Correspondence to Ka Gao or Linan An.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, K., Wu, Z., Ren, C. et al. Microstructures and Properties of AlCoCrNiFe High-Entropy Alloy Sintered by Hot Oscillating Pressing Under Different Sintering Times. JOM 76, 2554–2562 (2024). https://doi.org/10.1007/s11837-024-06459-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06459-9

Navigation