Skip to main content
Log in

Acid Leaching for Phosphorus Separation from the Co-processing of Dephosphorization Slag and Basic Oxygen Furnace Slag: Kinetics Investigation

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To realize efficient P removal and resource utilization of steelmaking slag, a synthetic slag with appropriate basicity was produced by co-processing the practical dephosphorization slag and basic oxygen furnace slag. The selective leaching behavior and dissolution kinetics of P were investigated. The results indicated that the P dissolution efficiency and reaction rate were significantly influenced by the variety in stirring rate and pH. However, the decreasing solid/liquid ratio and particle size can significantly enhance the reaction rate, while exerting a slight impact on the P dissolution efficiency. The leaching temperature had less influence on both P dissolution efficiency and reaction rate. Under the optimal leaching conditions, the leaching reaction of the P-condensed phase primarily occurred within the initial 3 min, and, finally, the P dissolution efficiency reached 87.5%, with an extremely low dissolved amount of Fe. After leaching, the Fe-rich residue consisted of massive Fe2O3, MgO, and MnO, with only 0.32% P2O5. This residue can be used as a raw material or flux in steel plants. Furthermore, it was found that the selective leaching of P was controlled by diffusion through the product layer, with the apparent activation energy of 5.80 kJ/mol. The empirical equation has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Basu, A.K. Lahiri, and S. Seetharaman, Metall. Mater. Trans. B 38, 357 (2007).

    Article  Google Scholar 

  2. L. Hao, S.X. Zhang, J.H. Dong, and W. Ke, Corros. Sci. 53, 4187 (2011).

    Article  Google Scholar 

  3. M.A. Tayeb, S. Spooner, and S. Sridhar, JOM 66, 1565 (2014).

    Article  Google Scholar 

  4. Y. Ogawa, M. Yano, S.Y. Kitamura, and H. Hirata, Steel Res. Int. 74, 70 (2003).

    Article  Google Scholar 

  5. H. Sun, J. Yang, R.H. Zhang, and W.K. Yang, Metall. Mater. Trans. B 52, 3403 (2021).

    Article  Google Scholar 

  6. H. Ohtake, and S. Tsuneda, Phosphorus Recovery and Recycling (Springer Singaporem, Singapore, 2019), pp3–8.

    Book  Google Scholar 

  7. Y. Sun, M. Chen, X. Ma, Z.X. Zhao, T. Evans, and B.J. Zhao, JOM 73, 1845 (2021).

    Article  Google Scholar 

  8. H.M. Zhou, Y.M. Bao, and L. Lin, Steel Res. Int. 84, 863 (2013).

    Article  Google Scholar 

  9. K. Matsubae-Yokoyama, H. Kubo, and T. Nagasaka, ISIJ Int. 50, 65 (2010).

    Article  Google Scholar 

  10. H.J. Li, H. Suito, and M. Tokuda, ISIJ Int. 35, 1079 (1995).

    Article  Google Scholar 

  11. K. Yokoyama, H. Kubo, K. Mori, H. Okada, S. Takeuchi, and T. Nagasaka, ISIJ Int. 47, 1541 (2007).

    Article  Google Scholar 

  12. C. Li, J.T. Gao, Z. Wang, H.R. Ren, and Z.C. Guo, ISIJ Int. 57, 767 (2017).

    Article  Google Scholar 

  13. J. Xi, G. Ji, Y. Liao, Y. Wu, Q. Liu, and M. Li, J. Sustain. Metall. 8, 51 (2022).

    Article  Google Scholar 

  14. M. Numata, N. Maruoka, S.J. Kim, and S.Y. Kitamura, ISIJ Int. 54, 1983 (2014).

    Article  Google Scholar 

  15. T. Teratoko, N. Maruoka, H. Shibata, and S.Y. Kitamura, High Temp. Mater. Process. 31, 329 (2012).

    Article  Google Scholar 

  16. C.M. Du, X. Gao, S. Ueda, and S.Y. Kitamura, ISIJ Int. 57, 487 (2017).

    Article  Google Scholar 

  17. C.M. Du, X. Gao, S. Ueda, and S.Y. Kitamura, J. Sustain. Metall. 4, 443 (2018).

    Article  Google Scholar 

  18. C.M. Du, Y.H. Yu, L.D. Jiang, and J.K. Yu, J. Clean. Prod. 332, 130087 (2022).

    Article  Google Scholar 

  19. C.M. Du, X. Gao, S. Ueda, and S.Y. Kitamura, Sci. Total. Environ. 819, 153125 (2022).

    Article  Google Scholar 

  20. Q. Zhao, C.J. Liu, X.H. Mei, H. Saxén, and R. Zevenhoven, Fundam. Res. https://doi.org/10.1016/j.fmre.2022.09.023 (2022).

    Article  Google Scholar 

  21. C.M. Du, X. Gao, S. Ueda, and S.Y. Kitamura, ISIJ Int. 58, 1659 (2018).

    Article  Google Scholar 

  22. J. Guo, Y. Bao, and M. Wang, Waste Manag. 78, 318 (2018).

    Article  Google Scholar 

  23. Y.H. Yu, C.M. Du, J.K. Yu, and X. Yang, Metall. Mater. Trans. B 53, 3635 (2022).

    Article  Google Scholar 

  24. T.K. Choo, J. Cashion, C. Selomulya, and L. Zhang, Energy Fuels 30, 1162 (2016).

    Article  Google Scholar 

  25. Y.H. Yu, C.M. Du, S.L. Fan, and W.M. Yu, J. Environ. Chem. Eng. 10, 108394 (2022).

    Article  Google Scholar 

  26. K. Liu, Q. Chen, Z. Yin, H. Hu, and Z. Ding, Hydrometallurgy 125, 125 (2012).

    Article  Google Scholar 

  27. E.A. Abdel-Aal, Hydrometallurgy 55, 247 (2000).

    Article  Google Scholar 

  28. O. Lachkar-Zamouri, K. Brahim, F. Bennour, and I. Khattech, J. Min. Metall. B. 55, 9 (2019).

    Article  Google Scholar 

  29. S. Aydogan, G. Ucar, and M. Canbazoglu, Hydrometallurgy 81, 45 (2006).

    Article  Google Scholar 

  30. P.K. Gbor and C.Q. Jia, Chem. Eng. Sci. 59, 1979 (2004).

    Article  Google Scholar 

  31. Z.M. Jin, G.W. Warren, and H. Henein, Metall. Trans. B 15, 5 (1984).

    Article  Google Scholar 

  32. E.A. Abdel-Aal and M.M. Rashad, Hydrometallurgy 74, 189 (2004).

    Article  Google Scholar 

  33. M. Ashraf, Z.I. Zafar, and T.M. Ansari, Hydrometallurgy 80, 286 (2005).

    Article  Google Scholar 

  34. H. Gao, T. Jiang, Y. Xu, J. Wen, and X. Xue, Min. Proc. Ext. Met. Rev. 41, 22 (2018).

    Article  Google Scholar 

  35. S. Aydogan, A. Aras, and M. Canbazoglu, Chem. Eng. J. 114, 67 (2005).

    Article  Google Scholar 

  36. M. Gharabaghi, M. Noaparast, and M. Irannajad, Hydrometallurgy 95, 341 (2009).

    Article  Google Scholar 

  37. H.H. Wang, G.Q. Li, D. Zhao, J.H. Ma, and J. Yang, Hydrometallurgy 171, 61 (2017).

    Article  Google Scholar 

  38. C.M. Du, X. Gao, S. Ueda, and S.Y. Kitamura, J. Sustain. Metall. 6, 724 (2020).

    Article  Google Scholar 

  39. Y.H. Yu, N.N. Lv, and C.M. Du, Can. Metall. Q. 61, 483 (2022).

    Article  Google Scholar 

  40. A. Ekmekyapar, E. Aktaş, A. Künkül, and N. Demirkiran, Metall. Mater. Trans. B 43, 764 (2012).

    Article  Google Scholar 

  41. M. Gharabaghi, M. Irannajad, and A.R. Azadmehr, Chem. Eng. Res. Des. 91, 325 (2013).

    Article  Google Scholar 

Download references

Funding

The funding was provided by National Natural Science Foundation of China (Grant No. 52104326) and Fundamental Research Funds for the Central Universities (Grant No. N2225016).

Author information

Authors and Affiliations

Authors

Contributions

YY: Data curation, Formal analysis, Investigation, Validation, Writing-original draft. CD: Conceptualization, Data curation, Project administration, Supervision, Writing-review & editing. YZ: Data curation, Formal analysis, Validation.

Corresponding author

Correspondence to Chuan-ming Du.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 181 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Yh., Du, Cm. & Zhang, Yt. Acid Leaching for Phosphorus Separation from the Co-processing of Dephosphorization Slag and Basic Oxygen Furnace Slag: Kinetics Investigation. JOM 76, 2501–2512 (2024). https://doi.org/10.1007/s11837-024-06442-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06442-4

Navigation