Skip to main content
Log in

Effect of Multi-pass Deformation on Microstructure Evolution of Spark Plasma Sintered Ti-6Al-4V Alloy

  • Innovations in Forming Technologies for Light Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this paper, the microstructure of Ti-6Al-4V alloy sintered by spark plasma was studied by multi-pass of hot compression experiment, and the influence of different thermal deformation parameters (hot compression temperature deformation: 950°C–20% for one pass, 850°C–20% for two passes and 900°C–10%/20%/30% for three passes) was studied. The results show that the dynamic recrystallization characteristic behavior appears in the three deformation passes. The microstructure after the first and second pass deformation is mainly composed of Widmanstätten structure. With the increase of strain rate, the thickness of lamellar α decreases gradually. In three pass, the grain boundary α phase and the layered α phase are twisted and bent when the deformation amount is 10% and 20%, and the deformation amount increases to 30%. The spheroidization of lamellar α phase occurs, and the size of β grain decreases obviously. The content of equiaxed α phase and grain size decrease with the increase of strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.R.B.J.C. Williams, Metals 10, 705 https://doi.org/10.3390/met10060705 (2020).

    Article  Google Scholar 

  2. Q. Wang, J. Kong, X. Liu, K. Dong, X. Song, Y. Yang, J. Xu, and X. Chen, Vacuum 193, 110554 https://doi.org/10.1016/j.vacuum.2021.110554 (2021).

    Article  ADS  CAS  Google Scholar 

  3. A. Babapoor, M.S. Asl, Z. Ahmadi, and A.S. Namini, Ceram. Int. 44, 14541 https://doi.org/10.1016/j.ceramint.2018.05.071 (2018).

    Article  CAS  Google Scholar 

  4. O.E. Falodun, B.A. Obadele, S.R. Oke, M.E. Maja, and P.A. Olubambi, J. Alloy. Compd. 736, 202 https://doi.org/10.1016/j.jallcom.2017.11.140 (2018).

    Article  CAS  Google Scholar 

  5. Z.H. Zhang, L.F. Wang, T.J. Su, and F.C. Wang, Appl. Mech. Mater. 782, 107 (2015).

    Article  ADS  Google Scholar 

  6. J. Wu, R. Guo, L. Xu, Z. Lu, Y. Cui, and R. Yang, J. Mater. Sci. Technol. 33, 172 https://doi.org/10.1016/j.jmst.2016.10.004 (2017).

    Article  ADS  CAS  Google Scholar 

  7. L. Liu and K. Morita, J. Eur. Ceram. Soc. 42, 2487 https://doi.org/10.1016/j.jeurceramsoc.2021.12.045 (2022).

    Article  CAS  Google Scholar 

  8. Y.C. Lin, X.-Y. Jiang, C.-J. Shuai, C.-Y. Zhao, D.-G. He, M.-S. Chen, and C. Chen, Mater. Sci. Eng., A 711, 293 https://doi.org/10.1016/j.msea.2017.11.044 (2018).

    Article  CAS  Google Scholar 

  9. G. Quan, S. Pu, H. Wen, Z. Zou, and J. Zhou, High Temp. Mater. Process. 34, 549 https://doi.org/10.1515/htmp-2014-0106 (2015).

    Article  CAS  Google Scholar 

  10. Z. Yan, H. Liu, X. Dai, L. Li, Z. Zhang, Q. Wang, and Y. Xue, J. Market. Res. 23, 3137 https://doi.org/10.1016/j.jmrt.2023.01.217 (2023).

    Article  CAS  Google Scholar 

  11. H. Liu, Z. Zhang, K. Xu, J. Zhang, Y. Xue, and Q. Wang, Mater. Charact. 178, 111263 https://doi.org/10.1016/j.matchar.2021.111263 (2021).

    Article  CAS  Google Scholar 

  12. X.Y. Liu Haijun, Z. Zhimin, R. Luying, W. Yaojin, X. Jian, and Y. Jiangpeng, Proc. Manufact. 50, 652 (2020).

    Article  Google Scholar 

  13. X. Jia, L. Wang, Z. Wang, C. Chen, and F. Zhang, J. Mater. Sci. 57, 22140 https://doi.org/10.1007/s10853-022-08014-w (2022).

    Article  ADS  CAS  Google Scholar 

  14. S. Zhang, W. Zeng, X. Gao, D. Zhou, and Y. Lai, J. Alloys Compd. 684, 201 https://doi.org/10.1016/j.jallcom.2016.05.176 (2016).

    Article  CAS  Google Scholar 

  15. K. Majchrowicz, A. Sotniczuk, B. Adamczyk-Cieślak, W. Chromiński, P. Jóźwik, Z. Pakieła, and H. Garbacz, J. Alloys Compd. 948, 169791 https://doi.org/10.1016/j.jallcom.2023.169791 (2023).

    Article  CAS  Google Scholar 

  16. S.J. Yang Shengli, L. Xiwu, Y. Xiaodong, Z. Yongan, L. Zhihui, H. Shushuhui, and X. Baiqing, Rare Met. Mater. Eng. (2017)

  17. O. Avwerosuoghene Moses, C. Themba Edmond, T. Thapelo Precious, L. Senzeni Sipho, O. Samuel Ranti, and O. Peter Apata, Mater. Today Proc. 18, 3791 https://doi.org/10.1016/j.matpr.2019.07.317 (2019).

    Article  CAS  Google Scholar 

  18. G. Shao, H. Li, X. Zhang, M. Zhan, and Z. Xiang, J. Alloys Compd. 908, 164591 https://doi.org/10.1016/j.jallcom.2022.164591 (2022).

    Article  CAS  Google Scholar 

  19. D. Cai, L. Xiong, W. Liu, G. Sun, and M. Yao, Mater. Charact. 58, 941 https://doi.org/10.1016/j.matchar.2006.09.004 (2007).

    Article  CAS  Google Scholar 

  20. A. Soltani-Tehrani, M. Habibnejad-Korayem, S. Shao, M. Haghshenas, and N. Shamsaei, Addit. Manuf. 51, 102584 https://doi.org/10.1016/j.addma.2021.102584 (2022).

    Article  CAS  Google Scholar 

  21. Z. Hu, X. Zhou, X.-A. Nie, S. Zhao, H. Liu, D. Yi, and X. Zhang, J. Alloys Compd. 788, 136 https://doi.org/10.1016/j.jallcom.2019.02.201 (2019).

    Article  CAS  Google Scholar 

  22. Z. Yan, L. Wang, X. Xu, Z. Zhou, A. Liu, and Z. Ning, Mater. Sci. Technol. 38, 1037 https://doi.org/10.1080/02670836.2022.2069317 (2022).

    Article  ADS  CAS  Google Scholar 

  23. A.L. Rominiyi, M.B. Shongwe, N. Maledi, B.J. Babalola, and P.A. Olubambi, Int. J. Adv. Manuf. Technol. 104, 1041 https://doi.org/10.1007/s00170-019-03950-5 (2019).

    Article  Google Scholar 

  24. Z. Zhang, M. Lin, D.H.L. Seng, S.L. Teo, F. Wei, H.R. Tan, A.K.H. Cheong, S.H. Lim, S. Wang, and J. Pan, Materialia 12, 100813 https://doi.org/10.1016/j.mtla.2020.100813 (2020).

    Article  CAS  Google Scholar 

  25. T. Jiao, T. Jiang, G. Dai, Y. Guo, Z. Sun, H. Chang, Y. Han, S. Li, and I.V. Alexandrov, Mater. Charact. 197, 112665 https://doi.org/10.1016/j.matchar.2023.112665 (2023).

    Article  CAS  Google Scholar 

  26. O. Molnarova, J. Duchon, E. de Prado, S. Csaki, F. Prusa, and P. Malek, Materials 13, 3756 https://doi.org/10.3390/ma13173756 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Y.V.R.K.P.O. Sivakesavam, Mater. Sci. Eng. A (2002)

  28. P. Cizek, S.R. Kada, N. Armstrong, R.A. Antoniou, S. Slater, and P.A. Lynch, Mater. Sci. Eng. A 836, 142700 https://doi.org/10.1016/j.msea.2022.142700 (2022).

    Article  CAS  Google Scholar 

  29. X. Lin, H. Huang, X. Yuan, Y. Wang, B. Zheng, X. Zuo, and G. Zhou, J. Alloys Compd. 891, 162105 https://doi.org/10.1016/j.jallcom.2021.162105 (2022).

    Article  CAS  Google Scholar 

  30. H.X. Zhou, S.W. Jiang, X.T. Li, and C.X. Li, Surf. Interfaces 33, 102237 https://doi.org/10.1016/j.surfin.2022.102237 (2022).

    Article  CAS  Google Scholar 

  31. E. Rogoff, M. Antony, and P. Markle, J. Mater. Eng. Perform. 27, 5227 https://doi.org/10.1007/s11665-018-3432-5 (2018).

    Article  CAS  Google Scholar 

  32. Z. Hao, Y. Chen, Q. Zhang, P. Wang, Y. Shu, and J. He, Adv. Powder Technol. 33, 103379 https://doi.org/10.1016/j.apt.2021.11.031 (2022).

    Article  CAS  Google Scholar 

  33. J.L.L. Zhu, B. Tang, F. Zhao, K. Hua, S. Yan, and H. Kou, Prog. Nat. Sci. Mater. Int. 30, 517 https://doi.org/10.1016/j.pnsc.2020.08.008 (2020).

    Article  CAS  Google Scholar 

  34. A. Sarkar, A. Marchattiwar, J.K. Chakravartty, and B.P. Kashyap, J. Nucl. Mater. 432, 9 https://doi.org/10.1016/j.jnucmat.2012.07.020 (2013).

    Article  ADS  CAS  Google Scholar 

  35. L. Dong, Int. J. Mech. Sci. 173, 105460 https://doi.org/10.1016/j.ijmecsci.2020.105460 (2020).

    Article  Google Scholar 

  36. L.-J. Zhang and X.-P. Guo, Rare Met. 36, 174 https://doi.org/10.1007/s12598-017-0881-1 (2017).

    Article  CAS  Google Scholar 

  37. M. Bönisch, A. Panigrahi, M. Calin, T. Waitz, M. Zehetbauer, W. Skrotzki, and J. Eckert, J. Alloys Compd. 697, 300 https://doi.org/10.1016/j.jallcom.2016.12.108 (2017).

    Article  CAS  Google Scholar 

  38. X. Chen, B. Tang, Y. Liu, X. Xue, L. Li, H. Kou, and J. Li, Prog. Nat. Sci. Mater. Int. 29, 587 https://doi.org/10.1016/j.pnsc.2019.08.004 (2019).

    Article  CAS  Google Scholar 

  39. Y.C. Lin, Y.-W. Xiao, Y.-Q. Jiang, G.-D. Pang, H.-B. Li, X.-Y. Zhang, and K.-C. Zhou, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2020.139282 (2020).

    Article  Google Scholar 

  40. T. Zhang, H. Xu, Z. Li, H. She, D. Du, A. Dong, H. Xing, D. Wang, G. Zhu, and B. Sun, J. Mech. Behav. Biomed. Mater. 109, 103842 https://doi.org/10.1016/j.jmbbm.2020.103842 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present work was supported by the National Natural Science Foundation of China (Grant no. 51675492).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Zhang, Z. & Xue, Y. Effect of Multi-pass Deformation on Microstructure Evolution of Spark Plasma Sintered Ti-6Al-4V Alloy. JOM 76, 1844–1855 (2024). https://doi.org/10.1007/s11837-023-06216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06216-4

Navigation