Skip to main content
Log in

Influence of High-Energy Pulse Current on the Mechanical Properties and Microstructures of Ti-6Al-4V Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study reported the effect of the high-energy pulse current on the mechanical properties and microstructure evolution of Ti-6Al-4V alloy in the compression deformation process. The electroplastic compression (EC) of Ti-6Al-4V alloy was performed with discharge voltages of 50 and 70 V and strain rates of 0.01 and 0.03 s−1, respectively. The results show that the mechanical properties of Ti-6Al-4V alloy greatly change under the influence of the high-energy pulse current. Metallographic examination and x-ray diffraction are performed to observe the microstructural evolution of the alloy. An obvious dynamic globularization occurs at the later stage of the EC process even though the temperature of the samples is relatively low. An αβ phase change also occurs during the EC process. The microstructural evolution of Ti-6Al-4V alloy during the EC process is mainly attributed to the thermal and athermal effects of electropulsing, which promotes the dislocation motion and nucleation rate of dynamic globularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Katou, J. Oh, Y. Miyamoto, K. Matsuura, and M. Kudoh, Freeform Fabrication of Titanium Metal and Intermetallic Alloys by Three-Dimensional Micro Welding, Mater. Des., 2007, 28(7), p 2093–2098

    Article  Google Scholar 

  2. C. Charles and N. Jävstrat, Development of a Microstructure Model for Metal Deposition of Titanium Alloy Ti-6Al-4V. In: 11th World Conference on Titanium, Kyoto (2007)

  3. L.J. Huang, L. Geng, A.B. Li, G.S. Wang, and X.P. Cui, Effects of Hot Compression and Heat Treatment on the Microstructure and Tensile Property of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy, Mater. Sci. Eng. A, 2008, 489(1–2), p 330–336

    Article  Google Scholar 

  4. B. Baufeld, O.V.D. Biest, and R. Gault, Microstructure of Ti-6Al-4V Specimens Produced by Shaped Metal Deposition, Int. J. Mater. Res., 2009, 100(6), p 1536–1542

    Article  Google Scholar 

  5. B. Baufeld and O.V.D. Biest, Mechanical Properties of Ti-6Al-4V Specimens Produced by Shaped Metal Deposition, Sci. Technol. Adv. Mater., 2009, 10(1), p 1536–1542

    Article  Google Scholar 

  6. B. Baufeld, O.V.D. Biest, and R. Gault, Additive Manufacturing of Ti-6Al-4V Components by Shaped Metal Deposition: Microstructure and Mechanical Properties, Mater. Des., 2010, 31(1), p 106–111

    Article  Google Scholar 

  7. R. Ding, Z.X. Guo, and A. Wilson, Microstructural Evolution of a Ti-6Al-4V Alloy During Thermomechanical Processing, Mater. Sci. Eng. A, 2002, 327(2), p 233–245

    Article  Google Scholar 

  8. G.G. Ren, Y.T. Je, Y.Z. Zhan, and S.L. Chong, Effect of Microstructure on Deformation Behavior of Ti-6Al-4V Alloy During Compressing Process, Mater. Des., 2012, 36(12), p 796–803

    Google Scholar 

  9. C.H. Park, Y.G. Ko, J.W. Park, and S.L. Chong, Enhanced Superplasticity Utilizing Dynamic Globularization of Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2008, 496(1), p 150–158

    Article  Google Scholar 

  10. G. Wang, L. Xu, Y. Wang, and Y. Cui, Processing Maps for Hot Working Behavior of a PM TiAl Alloy, J. Mater. Sci. Technol., 2011, 27(1), p 893–898

    Article  Google Scholar 

  11. S.Z. Zhang, M.M. Li, and R. Yang, Mechanism and Kinetics of Carbide Dissolution in Near Alpha Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-0.7Nd Titanium Alloy, Mater. Charact., 2011, 62(12), p 1151–1157

    Article  Google Scholar 

  12. H. Conrad, Effects of Electric Current on Solid State Phase Transformations in Metals, Mater. Sci. Eng. A, 2000, 287(2), p 227–237

    Article  Google Scholar 

  13. X.X. Ye, T.H. Zion, G.Y. Tang, and G. Song, Effect of Electroplastic Rolling on Deformability, Mechanical Property and Microstructure Evolution of Ti-6Al-4V Alloy Strip, Mater. Charact., 2014, 98, p 147–161

    Article  Google Scholar 

  14. J. Antonio, E. Sánchez, and A. Hernán, Electroplasticity-Assisted Bottom Bending Process, J. Mater. Process. Technol., 2014, 214(11), p 2261–2267

    Article  Google Scholar 

  15. J. Antonio, E. Sánchez, and A. Hernán, Mechanical and Metallurgical Changes on 308L Wires Drawn by Electropulses, Mater. Des., 2015, 90, p 1159–1169

    Google Scholar 

  16. X.X. Ye, T.H. Zion, G.Y. Tang, Y. Geng, and G. Song, Influence of Electropulsing Globularization on the Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Strip with Lamellar Microstructure, Mater. Sci. Eng. A, 2014, 622(14), p 1500–1512

    Google Scholar 

  17. X.X. Ye, Y.Y. Yang, and G.Y. Tang, Microhardness and Corrosion Behavior of Surface Gradient Oxide Coating on Titanium Alloy Strips Under Electro-Pulsing Treatment, Surf. Coat. Technol., 2014, 258(1–2), p 467–484

    Article  Google Scholar 

  18. Z. Xu, G.Y. Tang, S. Tian, F. Ding, and H. Tian, Research of Electroplastic Rolling of AZ31 Mg Alloy Strip, J. Mater. Process. Technol., 2007, 182(1), p 128–133

    Article  Google Scholar 

  19. W.K. Bao, X.G. Chu, S.X. Lin, and J. Gao, Experimental Investigation on Formability and Microstructure of AZ31B Alloy in Electropulse-Assisted Incremental Forming, Mater. Des., 2015, 87, p 632–639

    Article  Google Scholar 

  20. Z.Y. Zhao, H.L. Hou, N. Zhang, Y. Zhang, Y. Wang, and G. Wang, Effect of High-Energy Electro-Pulses on the Compression Deformation Behavior of Ti-6Al-4V Alloy, Met. Mater. Int., 2016, 22(4), p 585–593

    Article  Google Scholar 

  21. J.F. Jiang, Y. Wang, and J.J. Qu, Microstructure and Mechanical Properties of AZ61 Alloys with Large Cross-Sectional Size Fabricated by Multi-pass ECAP, Mater. Sci. Eng. A, 2013, 560, p 473–480

    Article  Google Scholar 

  22. A.F. Sprecher, S.L. Mannan, and H. Conrad, On the Mechanisms for the Electroplastic Effect in Metals, Acta Metall., 1986, 34(7), p 1145–1162

    Article  Google Scholar 

  23. K. Okazaki, M. Kagawa, and H. Conard, An Evaluation of the Contribution of Skin, Pinch and Heating Effects to the Electroplastic Effect in Titanium, Mater. Sci. Eng., 1980, 45(7), p 109–116

    Article  Google Scholar 

  24. H. Conrad, Electroplasticity in Metals and Ceramics, Mater. Sci. Eng. A, 2000, 284(2), p 276–287

    Article  Google Scholar 

  25. R.D. Doherty, D.A. Hughes, F.J. Humphreys, and J.J. Jonas, J ensen DJ, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238(2), p 219–274

    Article  Google Scholar 

  26. A.A. Krokhin, L.N. Gumen, and J.M. Galligan, Tilt Effect in the Electron Drag of Dislocations in Metals, Philos. Mag., 1998, 77(2), p 497–506

    Article  Google Scholar 

  27. Z. Liu, X. Deng, and Z. Wang, Effect of Current Pulse on Dynamics of Recrystallization in 2091 Al-Li Alloy, Chin. J. Mater. Res, 2001, 15(6), p 358–366

    Google Scholar 

  28. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, 1995, p 363–392

    Google Scholar 

  29. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Microstructural Mechanisms During Hot Working of Commercial Grade Ti-6Al-4V with Lamellar Starting Structure, Mater. Sci. Eng. A, 2002, 325(1–2), p 112–125

    Article  Google Scholar 

  30. J. Yoon and Y. Lee, Fracture Mechanism of Mg-3Al-1Zn Sheet at the Biaxial State with Respect to Forming Temperatures, Mater. Des., 2014, 55(6), p 43–49

    Article  Google Scholar 

  31. J. Luo, M.Q. Li, W.X. Yu, and H. Li, Effect of the Strain on Processing Maps of Titanium Alloys in Isothermal Compression, Mater. Sci. Eng. A, 2009, 504(1–2), p 90–98

    Article  Google Scholar 

  32. L. Guan, G.Y. Tang, and Y.B. Jiang, Texture Evolution in Cold-Rolled AZ31 Magnesium Alloy During Electropulsing Treatment, J. Alloys Compd., 2009, 487(1–2), p 309–313

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Major State Basic Research Development Program of China (No. 2011CB012803) and National Nature Science Foundation of China (Nos. 51405457 and 51605458).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Wang, G., Hou, H. et al. Influence of High-Energy Pulse Current on the Mechanical Properties and Microstructures of Ti-6Al-4V Alloy. J. of Materi Eng and Perform 26, 5146–5153 (2017). https://doi.org/10.1007/s11665-017-2960-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2960-8

Keywords

Navigation