Skip to main content
Log in

Crystallization Behavior of Calcium Silicate-Based Mold Flux Under Electropulsing Treatment with Different Pulse Duty Cycles

  • Characterization of Interactions between Materials and External Fields
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Electropulsing treatment (EPT), as an external field technology, has the potential to adjust the crystallization of mold flux when it is locally applied in the casting mold. In this study, the effect of EPT with different pulse duty cycles on crystallization behavior of calcium silicate-based mold flux was investigated. The results show that the morphology of crystals precipitated in the mold flux transforms from elongated grains into block-like grains, with the average grain radius increasing from 14.1 ± 1.01 μm to 24.7 ± 2.07 μm when the duty cycle increases from 10% to 70%. Phase analyses show that the fraction of Ca2Mg0.75Al0.5Si1.75O7 in the mold flux increases from 11.2 wt.% to 14.7 wt.%, while that of Ca4Si2O7F2 decreases from 88.8 wt.% to 85.3 wt.% with the increase of the duty cycle. The variation of content of these phases is mainly due to their electrical conductivity, which leads to the enhancement of melilite and the inhibition of cuspidine precipitation when the electropulsing is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Wang, C. Zhu, and L. Zhou, Steel Res. Int. 88, 1600488 (2017).

    Article  Google Scholar 

  2. L. Zhou, H. Luo, W. Wang, X. Yan, and H. Wu, J. Iron. Steel Res. Int. 29, 53 (2022).

    Article  Google Scholar 

  3. P.E.R. Lopez, P.N. Jalali, U. Sjöström, P.G. Jönsson, K.C. Mills, and I. Sohn, ISIJ Int. 58, 201 (2018).

    Article  Google Scholar 

  4. W. Wang, X. Yan, L. Zhou, S. Xie, and D. Huang, Metall. Mater. Trans. B 47, 963 (2016).

    Article  Google Scholar 

  5. J. Qi, C. Liu, and M. Jiang, Ceram. Int. 47, 34396 (2021).

    Article  Google Scholar 

  6. K.C. Mills, and A.B. Fox, ISIJ Int. 43, 1479 (2003).

    Article  Google Scholar 

  7. S. He, Q. Wang, D. Xie, C. Xu, Z.S. Li, and K.C. Mills, Int. J. Min. Met. Mater. 16, 261 (2009).

    Article  Google Scholar 

  8. K.C. Mills, A.B. Fox, Z. Li, and R.P. Thackray, Ironmak. Steelmak. 32, 26 (2005).

    Article  Google Scholar 

  9. J.Y. Baek, J.W. Cho, and S.H. Kim, Metall. Mater. Trans. B 47, 32 (2016).

    Article  Google Scholar 

  10. D.W. Yoon, J.W. Cho, and S.H. Kim, Metall. Mater. Trans. B 48, 1951 (2017).

    Article  Google Scholar 

  11. L. Zhou, W. Wang, F. Ma, J. Li, J. Wei, H. Matsuura, and F. Tsukihashi, Metall. Mater. Trans. B 43, 354 (2012).

    Article  Google Scholar 

  12. H. Nakada, and K. Nagata, ISIJ Int. 46, 441 (2006).

    Article  Google Scholar 

  13. G. Wen, H. Liu, and T. Ping, J. Iron. Steel Res. Int. 15, 32 (2008).

    Article  Google Scholar 

  14. K.C. Mills, ISIJ Int. 56, 1 (2016).

    Article  Google Scholar 

  15. H. Nakada, M. Susa, Y. Seko, M. Hayashi, and K. Nagata, ISIJ Int. 48, 446 (2008).

    Article  Google Scholar 

  16. L. Zhang, H. Liu, N. Li, J. Wang, R. Zhang, H. Xing, and K. Song, J. Mater. Res. 31, 396 (2016).

    Article  Google Scholar 

  17. H. Conrad, Mater. Sci. Eng. A 287, 205 (2000).

    Article  Google Scholar 

  18. T. Ma, X. Sun, Y. Ning, and W. Hao, High Temp. Mater. Process. 40, 382 (2021).

    Article  Google Scholar 

  19. T. Yu, D. Deng, G. Wang, and H. Zhang, J. Clean. Prod. 113, 989 (2016).

    Article  Google Scholar 

  20. D. Räbiger, Y. Zhang, V. Galindo, S. Franke, B. Willers, and S. Eckert, Acta Mater. 79, 327 (2014).

    Article  Google Scholar 

  21. L. Zhou, H. Wu, W. Wang, H. Luo, X. Yan, and Y. Yang, Ceram. Int. 48, 232 (2022).

    Article  Google Scholar 

  22. L. Zhou, H. Wu, W. Wang, H. Luo, X. Yan, and Y. Yang, Metall. Mater. Trans. B 53, 466 (2022).

    Article  Google Scholar 

  23. W. Wang, X. Yan, L. Zhou, H. Wu, Q. Zheng, and R. Zhao, Ceram. Int. 49, 4686 (2023).

    Article  Google Scholar 

  24. L. Zhou, W. Wang, J. Wei, and K. Zhou, ISIJ Int. 55, 821 (2015).

    Article  Google Scholar 

  25. M.B. Fenton, P.A. Faure, and J.M. Ratcliffe, J. Exp. Biol. 215, 2935 (2012).

    Article  Google Scholar 

  26. T. Watanabe, H. Fukuyama, and K. Nagata, ISIJ Int. 42, 489 (2002).

    Article  Google Scholar 

  27. M. Hanao, M. Kawamoto, and T. Watanabe, ISIJ Int. 44, 827 (2004).

    Article  Google Scholar 

  28. A.G. Bhagurkar, and R. Qin, J. Mater. Res. Technol. 19, 2146 (2022).

    Article  Google Scholar 

  29. C.R. Hubbard, and R.L. Snyder, Powder Diffr. 3, 74 (1988).

    Article  Google Scholar 

  30. W.J. Lu, and R.S. Qin, Adv. Mater. Res. 922, 441 (2014).

    Article  Google Scholar 

  31. W.J. Lu, X.F. Zhang, and R.S. Qin, Philos. Mag. Lett. Mag. Lett. 94, 688 (2014).

    Article  Google Scholar 

  32. Y. Jiang, G. Tang, C. Shek, Y. Zhu, and Z. Xu, Acta Mater. 57, 4797 (2009).

    Article  Google Scholar 

  33. X. Huang, X. Ba, J. Gao, and X. Zhang, Steel Res. Int. 91, 1900400 (2020).

    Article  Google Scholar 

  34. A.A. Reddy, D.U. Tulyaganov, A. Goel, S. Kapoor, M.J. Pascual, and J.M. Ferreira, J. Mater. Sci. 48, 4128 (2013).

    Article  Google Scholar 

  35. M.C. Martín-Sedeño, E.R. Losilla, L. León-Reina, S. Bruque, D. Marrero-López, P. Núñez, and M.A. Aranda, Chem. Mater. 16, 4960 (2004).

    Article  Google Scholar 

Download references

Acknowledgement

The work was supported by Natural Science Foundation of Hunan Province [grant numbers 2022JJ10081] and National Natural Science Foundation of China [grant number 52174327, U1760202].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lejun Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Yan, X., Zhou, L. et al. Crystallization Behavior of Calcium Silicate-Based Mold Flux Under Electropulsing Treatment with Different Pulse Duty Cycles. JOM 75, 5141–5148 (2023). https://doi.org/10.1007/s11837-023-06176-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06176-9

Navigation