Skip to main content
Log in

Sintering and devitrification of glass-powder compacts in the akermanite–gehlenite system

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The sintering and devitrification behavior of glass-powder compacts with four compositions, Ca2Mg0.5Al1.0Si1.5O7, Ca2Mg0.6Al0.8Si1.6O7, Ca2Mg0.7Al0.6Si1.7O7, and Ca2Mg0.8Al0.4Si1.8O7, corresponding to akermanite–gehlenite ratios (mol%) of 50/50, 60/40, 70/30, and 80/20 were investigated. Glass frits were prepared by the classical melt quenching technique in water. The structure of the glasses was investigated using FTIR and NMR, whereas the sintering behavior was studied by DTA and HSM. Sintering precedes crystallization only in Ca2Mg0.5Al1.0Si1.5O7 glass while in the remaining glass compositions maximum densification was achieved slight after the onset of crystallization. However, the ratios of final area/initial area (A/A 0) of the glass-powder compact ranging from 0.63 to 0.66 imply towards good densification levels (95–98 %) achieved in the investigated glasses. Qualitative and quantitative XRD analyzes were performed in glass-powder compacts heat treated at 900 and 1000 °C. Merwinite was found to crystallize first followed by decomposition at higher temperatures to form akermanite-like phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wood JA (1988) Ann Rev Earth Planet Sci 16:53

    Article  CAS  Google Scholar 

  2. Deer WA, Howie RA, Zussman J (1963) Rock forming minerals 1: ortho and ring silicates. Longman, London

    Google Scholar 

  3. Osborn EF, Schairer JF (1941) Am J Sci 239:75

    Article  Google Scholar 

  4. Merlini M, Gemmi M, Artioli G (2006) Z Kristallogr Suppl 23:419

    Article  Google Scholar 

  5. Yoder HS (1950) J Geol 58:221

    Article  CAS  Google Scholar 

  6. Bowen NL, Schairer JF, Posnjak E (1933) Am J Sci 26:193

    Article  CAS  Google Scholar 

  7. Nurse RW, Midgley HG (1953) J Iron Steel Res Int 174:121

    CAS  Google Scholar 

  8. Franklin FF, Robert LH, Philip ER (1987) Am Miner 72:137

    Google Scholar 

  9. John BF, Buddington AF (1920) Am J Sci 50:131

    Article  Google Scholar 

  10. Warren B (1930) Z Kristallogr 74:131

    CAS  Google Scholar 

  11. Smith JV (1953) Am Miner 38:643

    CAS  Google Scholar 

  12. Kimata M, Ii N (1981) N Jahrb Mineral Mh 1:1

    Google Scholar 

  13. Swainson IP, Martin TD, Wolfgane WS, Andrew P (1992) Phys Chem Miner 19:185

    Article  CAS  Google Scholar 

  14. Merlini M, Gemini M, Giuseppe C, Gilberto A (2008) Phys Chem Miner 35:147

    Article  Google Scholar 

  15. Orsini PG, Buri A, Marotta A (1975) J Am Ceram Soc 58:306

    Article  CAS  Google Scholar 

  16. Charlu TV, Newton RC, Kleppa OJ (1981) Geochim Cosmochim Acta 45:1609

    Article  CAS  Google Scholar 

  17. Małecki A, Lejus AM, Viana B, Vivien D, Collongues R (1994) J Non Cryst Solids 170:161

    Article  Google Scholar 

  18. Małecki A, Lejus AM, Viana B, Vivien D, Collongues R (1995) J Therm Anal 44:461

    Article  Google Scholar 

  19. Goel A, Reddy AA, Pascual MJ, Gremillard L, Malchere A, Ferreira JMF (2012) J Mater Chem 22:10042

    Article  CAS  Google Scholar 

  20. Pascual MJ, Pascual L, Duran A (2001) Phys Chem Glasses 42:61

    CAS  Google Scholar 

  21. Pascual DuranA, Prado MO (2005) Phys Chem Glasses 46:512

    CAS  Google Scholar 

  22. Tarte P (1967) Spectrochim Acta A 23:2127

    Article  CAS  Google Scholar 

  23. Sharma SK, Yoder HS Jr, Matson DW (1988) Geochim Cosmochim Acta 52:1961

    Article  CAS  Google Scholar 

  24. Sharma SK, Yoder HS Jr (1979) Carnegie Inst Wash Yearb 78:526

    Google Scholar 

  25. Engelhardt G, Michel D (1987) High resolution solid state NMR of silicates and zeolites. Wiley, Chichester

    Google Scholar 

  26. Murdoch JB, Stebbins JF, Carmichael ISE, Pines A (1988) Phys Chem Miner 15:370

    Article  CAS  Google Scholar 

  27. Lara C, Pascual MJ, Duran A (2004) J Non Cryst Solids 348:149

    Article  CAS  Google Scholar 

  28. Fernandes HR, Tulyaganov DU, Pascual MJ, Kharton VV, Yaremchenko AA, Ferreira JMF (2012) J Eur Ceram Soc 32:2283

    Article  CAS  Google Scholar 

  29. Young RA (1993) In: Young RA (ed) The Rietveld method. International Union of Crystallography Monographs on Crystallography, vol 5. Oxford University Press, Oxford, p 1

    Google Scholar 

  30. Dear PS (1969) Lithos 3:13

    Article  Google Scholar 

  31. Donald IW, Mallinson PM, Metcalfe BL, Gerrard LA, Fernie JA (2011) J Mater Sci 46:1975. doi:10.1007/s10853-010-5095-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the University of Aveiro, CICECO and FCT, Portugal (PTDC/CTM-CER/114209/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. F. Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, A.A., Tulyaganov, D.U., Goel, A. et al. Sintering and devitrification of glass-powder compacts in the akermanite–gehlenite system. J Mater Sci 48, 4128–4136 (2013). https://doi.org/10.1007/s10853-013-7225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7225-9

Keywords

Navigation