Skip to main content
Log in

Reactive Synthesis in Additive Manufacturing of an Ultrahigh Temperature MoSiB Alloy

  • Additive Manufacturing for High Temperature Energy Systems: Harvesting Material Data and Modeling
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To address the challenges of processing ultrahigh-temperature refractory metal alloys, a novel reactive synthesis-based additive manufacturing technique has been developed to fabricate chemically uniform and dense alloys. The present study demonstrates the reactive additive manufacturing of Mo-4Si-6B (at.%), a high-temperature refractory alloy, using directed energy deposition. For the alloy in the Mo-Si-B system, a premixed blend of molybdenum, silicon nitride, and boron nitride powder was used to make an alloy with the desired composition. A dimensionless number was used to design the process parameters and build efficiency. High-throughput synthesis using build height measurements of individual samples validated the predicted process parameters. Microstructural characterization investigations and indentation hardness testing indicated chemically uniform samples with refined microsegregation in samples with high hardness and no cracking, even with a 10-kg force load. The results demonstrate an effective strategy for additively manufacturing refractory alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.H. Perepezko and R. Sakidja, Adv. Eng. Mater. 11, 892 https://doi.org/10.1002/adem.200900118 (2009).

    Article  Google Scholar 

  2. J.H. Perepezko, Science 326, 1068 https://doi.org/10.1126/science.1179327 (2009).

    Article  Google Scholar 

  3. D.M. Dimiduk and J.H. Perepezko, MRS Bull. 28, 639 https://doi.org/10.1557/mrs2003.191 (2011).

    Article  Google Scholar 

  4. L. Su, O. Lu-Steffes, H. Zhang, and J.H. Perepezko, Appl. Surf. Sci. 337, 38 https://doi.org/10.1016/j.apsusc.2015.02.061 (2015).

    Article  Google Scholar 

  5. D.R. Lide, Crc Handbook of Chemistry and Physics 2008–2009: A Ready-Reference Book of Chemical and Physical Data (CRC Press-Taylor & Francis, Cleveland, 2008).

    Google Scholar 

  6. M. Krüger, S. Franz, H. Saage, M. Heilmaier, J.H. Schneibel, P. Jéhanno, M. Böning, and H. Kestler, Intermetallics 16, 933 https://doi.org/10.1016/j.intermet.2008.04.015 (2008).

    Article  Google Scholar 

  7. J.L. Yu, Z.K. Li, X. Zheng, J.J. Zhang, H. Liu, R. Bai, and H. Wang, Mater. Sci. Eng. A 532, 392 https://doi.org/10.1016/j.msea.2011.11.001 (2012).

    Article  Google Scholar 

  8. J.A. Shields Jr. and E.L. Baker, Adv. Mater. Processes 155, 61 (1999).

    Google Scholar 

  9. J.J. Kruzic, J.H. Schneibel, and R.O. Ritchie, Metall. Mater. Trans. A 36, 2393–2402 https://doi.org/10.1007/s11661-005-0112-5 (2005).

    Article  Google Scholar 

  10. J.H. Perepezko and R. Sakidja, JOM 62, 13 https://doi.org/10.1007/s11837-010-0148-x (2010).

    Article  Google Scholar 

  11. P. Ritt, R. Sakidja, and J.H. Perepezko, Surf. Coat. Technol. 206(19–20), 4166 https://doi.org/10.1016/j.surfcoat.2012.04.016 (2012)

    Article  Google Scholar 

  12. P. Jain and K.S. Kumar, Scr. Mater. 62, 1 https://doi.org/10.1016/j.scriptamat.2009.09.008 (2010).

    Article  Google Scholar 

  13. D. Sturm, M. Heilmaier, J.H. Schneibel, P. Jéhanno, B. Skrotzki, and H. Saage, Mater. Sci. Eng. A 463, 107 https://doi.org/10.1016/j.msea.2006.07.153 (2007).

    Article  Google Scholar 

  14. M.K. Miller, E.A. Kenik, M.S. Mousa, K.F. Russell, and A.J. Bryhan, Scr. Mater. 46, 299 https://doi.org/10.1016/S1359-6462(01)01242-8 (2002).

    Article  Google Scholar 

  15. M.K. Miller and A.J. Bryhan, Mater. Sci. Eng. A 327, 80 https://doi.org/10.1016/S0921-5093(01)01880-9 (2002).

    Article  Google Scholar 

  16. H. Saage, M. Krüger, D. Sturm, M. Heilmaier, J.H. Schneibel, E. George, L. Heatherly, C. Somsen, G. Eggeler, and Y. Yang, Acta Mater. 57, 3895 https://doi.org/10.1016/j.actamat.2009.04.040 (2009).

    Article  Google Scholar 

  17. L. Liu, C. Shi, C. Zhang, P.M. Voyles, J.H. Fournelle, and J.H. Perepezko, Intermetallics 116, 106618 https://doi.org/10.1016/j.intermet.2019.106618 (2020).

    Article  Google Scholar 

  18. X. Nan, S. Ida, N. Sekido, K. Yoshimi, and J.H. Perepezko, Corros. Sci. 214, 110990 https://doi.org/10.1016/j.corsci.2023.110990 (2023).

    Article  Google Scholar 

  19. B. Barroqueiro, A. Andrade-Campos, R. Valente, and V. Neto, J. Manuf. Mater. Process. 3, 52 (2019).

    Google Scholar 

  20. Z. Islam, P. Nelaturu, and D.J. Thoma, Appl. Phys. Lett. 119, 231901 https://doi.org/10.1063/5.0069384 (2021).

    Article  Google Scholar 

  21. M.R. Middlemas and J.K. Cochran, JOM 60, 19 https://doi.org/10.1007/s11837-008-0084-1 (2008).

    Article  Google Scholar 

  22. D. Pu and Y. Pan, Vacuum 196, 110727 https://doi.org/10.1016/j.vacuum.2021.110727 (2022).

    Article  Google Scholar 

  23. W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates, Calphad 33, 328 https://doi.org/10.1016/j.calphad.2008.08.004 (2009).

    Article  Google Scholar 

  24. M. van Elsen, F. Al-Bender, and J.P. Kruth, Rapid Prototyp. J. 14, 15 https://doi.org/10.1108/13552540810841526 (2008).

    Article  Google Scholar 

  25. T. Mukherjee, V. Manvatkar, A. De, and T. DebRoy, J. Appl. Phys. 121, 064904 https://doi.org/10.1063/1.4976006 (2017).

    Article  Google Scholar 

  26. E. Buckingham, Phys. Rev. 4, 345 https://doi.org/10.1103/PhysRev.4.345 (1914).

    Article  Google Scholar 

  27. D. Rosenthal, Trans. Am. Soc. Mech. Eng. 68, 849 https://doi.org/10.1115/1.4018624 (2022).

    Article  Google Scholar 

  28. K.M. Bertsch, G.M. De Bellefon, B. Kuehl, and D.J. Thoma, Acta Materialia, 199, 19 https://doi.org/10.1016/j.actamat.2020.07.063 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the support of the Department of Energy (DOE), Advanced Research Projects Agency-Energy (ARPA-E) Ultrahigh Temperature Impervious Materials Advancing Turbine Efficiency (ULTIMATE) Program (DE-AROOO1431). APT was performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT). The LEAP tomograph at NUCAPT was purchased and upgraded with grants from the NSF-MRI (DMR-0420532) and ONR-DURIP (N00014-0400798, N00014-0610539, N00014-0910781, N00014-1712870) programs. NUCAPT received support from the MRSEC program (NSF DMR-1720139) at the Materials Research Center, the SHyNE Resource (NSF ECCS-2025633), and the Initiative for Sustainability and Energy (ISEN) at NU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan J. Thoma.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, Z., Amalraj, M., Liu, L. et al. Reactive Synthesis in Additive Manufacturing of an Ultrahigh Temperature MoSiB Alloy. JOM 75, 5037–5045 (2023). https://doi.org/10.1007/s11837-023-06167-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06167-w

Navigation