Skip to main content
Log in

Microstructure, Mechanical Properties and Oxidation Behavior of Refractory Multi-principal Element Alloys by Laser Remelting and Conventional Manufacturing

  • Additive Manufacturing for High Temperature Energy Systems: Harvesting Material Data and Modeling
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Refractory multi-principal element alloys (RMPEAs), HfNbTaTiZr, (HfNbTaTiZr)9Cr, and (HfNbTaTiZr)9Al, were manufactured using vacuum arc melting followed by laser remelting to mimic additive manufacturing. The microhardness of the as-cast HfNbTaTiZr, (HfNbTaTiZr)9Cr, and (HfNbTaTiZr)9Al samples after arc melting was measured as 6.20, 7.63, and 6.89 Gpa, respectively. After laser remelting and re-solidification, the hardness increased by ~ 30% for each composition; the hardest was (HfNbTaTiZr)9Cr measured at 9.60 GPa, while the softest was HfNbTaTiZr with a hardness of 8.42 GPa, which was still harder compared to all the other samples. The addition of Al and Cr led to enhanced oxidation resistance for the respective RMPEA systems. The Al-containing composition showed the best oxidation resistance for the samples; however, after laser remelting, the Cr-containing RMPEA had the best overall oxidation resistance, and the increase in weight after oxidation dropped by 42% when compared to that for the as-cast alloy. Laser remelting the RMPEAs led to an improvement in mechanical properties; it also resulted in enhanced oxidation resistance for (HfNbTaTiZr)9Cr. However, laser remelting barely changed the oxidation resistance for (HfNbTaTiZr)9Al, and it decreased the oxidation resistance for HfNbTaTiZr. These phenomena are related to microstructure changes induced by the laser remelting/additive manufacturing compared to conventional casting-based manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Intermetallics 18, 1758 (2010).

    Article  Google Scholar 

  2. J.P. Couzinié, G. Dirras, L. Perrière, T. Chauveau, E. Leroy, Y. Champion, and I. Guillot, Mater. Lett. 126, 285 (2014).

    Article  Google Scholar 

  3. M. C. Gao, B. Zhang, S. Yang, and S. M. Guo, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 47, 3333 (2016).

  4. B. Liu, J. Wang, J. Chen, Q. Fang, and Y. Liu, JOM 69, 651 (2017).

    Article  Google Scholar 

  5. O.A. Waseem, J. Lee, H.M. Lee, and H.J. Ryu, Mater. Chem. Phys. 210, 87 (2018).

    Article  Google Scholar 

  6. B. Kang, J. Lee, H.J. Ryu, and S.H. Hong, Mater. Sci. Eng. A 712, 616 (2018).

    Article  Google Scholar 

  7. H. Dobbelstein, E.P. George, E.L. Gurevich, A. Kostka, A. Ostendorf, and G. Laplanche, Int. J. Extrem. Manuf. 3, 15201 (2020).

    Article  Google Scholar 

  8. R. Wang, K. Zhang, C. Davies, and X. Wu, J. Alloys. Compd. 694, 971 (2017).

    Article  Google Scholar 

  9. H.I. Jeong, C.M. Lee, and D.H. Kim, Mater. 15, 6570 (2022).

    Article  Google Scholar 

  10. H. Dobbelstein, E.L. Gurevich, E.P. George, A. Ostendorf, and G. Laplanche, Addit. Manuf. 24, 386 (2018).

    Google Scholar 

  11. H. Dobbelstein, M. Thiele, E.L. Gurevich, E.P. George, and A. Ostendorf, Phys. Procedia. 83, 624 (2016).

    Article  Google Scholar 

  12. B. Xiao, W. Jia, J. Wang, and L. Zhou, Mater. Charact. 193, 112278 (2022).

    Article  Google Scholar 

  13. C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, and J.W. Yeh, Intermetallics 62, 76 (2015).

    Article  Google Scholar 

  14. G.V. Samsonov, Handbook of the Physicochemical Properties of the Elements (Springer, New York, NY, 2012), pp97–124.

    Google Scholar 

  15. “Periodic Table - Ptable - Properties - Electronegativity.” https://ptable.com/?lang=en#Properties/Electronegativity (accessed Apr. 20, 2023).

  16. W. Hume-Rothery, J. Inst. Met. 35, 295 (1926).

    Google Scholar 

  17. P. Thirathipviwat, G. Song, J. Jayaraj, J. Bednarcik, H. Wendrock, T. Gemming, J. Freudenberger, K. Nielsch, and J. Han, J. Alloys. Compd. 790, 266 (2019).

    Article  Google Scholar 

  18. P. Thirathipviwat, G. Song, J. Bednarcik, U. Kühn, T. Gemming, K. Nielsch, and J. Han, Prog. Nat. Sci. Mater. Int. 30, 545 (2020).

    Article  Google Scholar 

  19. Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R. O. Ritchie, and Q. Yu, Nat. 574:7777 574, 223 (2019).

  20. C. Lee, G. Song, M.C. Gao, R. Feng, P. Chen, J. Brechtl, Y. Chen, K. An, W. Guo, J.D. Poplawsky, S. Li, A.T. Samaei, W. Chen, A. Hu, H. Choo, and P.K. Liaw, Acta. Mater. 160, 158 (2018).

    Article  Google Scholar 

  21. H. Song, F. Tian, Q.M. Hu, L. Vitos, Y. Wang, J. Shen, and N. Chen, Phys. Rev. Mater. 1, 023404 (2017).

    Article  Google Scholar 

  22. P. Thirathipviwat, S. Sato, G. Song, J. Bednarcik, K. Nielsch, J. Jung, and J. Han, Scr. Mater. 210, 114470 (2022).

    Article  Google Scholar 

  23. P. Thirathipviwat, S. Sato, G. Song, J. Bednarcik, K. Nielsch, and J. Han, Mater. Sci. Eng. A 823, 141775 (2021).

    Article  Google Scholar 

  24. T. Han, Y. Liu, M. Liao, D. Yang, N. Qu, Z. Lai, and J. Zhu, J. Mater. Sci. Technol. 99, 18 (2022).

    Article  Google Scholar 

  25. S. Zhou, Y. Xu, B. Liao, Y. Sun, X. Dai, J. Yang, and Z. Li, Opt. Laser. Technol. 103, 8 (2018).

    Article  Google Scholar 

  26. K. Yang, J. Li, Q.Y. Wang, Z. Li, Y. Jiang, and Y. Bao, Wear 426–427, 314 (2019).

    Article  Google Scholar 

  27. X. Yang, J. Liu, X. Cui, G. Jin, Z. Liu, Y. Chen, and X. Feng, J. Phys. Chem. Solids. 130, 210 (2019).

    Article  Google Scholar 

  28. I. Watanabe, K. Terada, and M. Akiyama, J. Iron Steel Inst. 174, 25 (1953).

    Google Scholar 

  29. E. Hall, Proc. Phys. Soc. Sect. B 64, 747 (1951).

    Article  Google Scholar 

  30. X.B. Feng, J.Y. Zhang, Y.Q. Wang, Z.Q. Hou, K. Wu, G. Liu, and J. Sun, Int. J. Plast. 95, 264 (2017).

    Article  Google Scholar 

  31. H.X. Yang, J.S. Li, T. Guo, W.Y. Wang, H.C. Kou, and J. Wang, Rare Met. 39, 156 (2020).

    Article  Google Scholar 

  32. J. Gubicza, A. Heczel, M. Kawasaki, J.K. Han, Y. Zhao, Y. Xue, S. Huang, and J.L. Lábár, J. Alloys. Compd. 788, 318 (2019).

    Article  Google Scholar 

  33. B. Gwalani, V. Soni, M. Lee, S.A. Mantri, Y. Ren, and R. Banerjee, Mater. Des. 121, 254 (2017).

    Article  Google Scholar 

  34. C. Yao, P. Xiaotong, G. Qunfu, W. Zhijie, and N. Pulin, Mater. Sci. Eng. A 840, 142951 (2022).

    Article  Google Scholar 

  35. B. Xin, X. Zhou, G. Cheng, J. Yao, and Y. Gong, Opt. Laser. Technol. 127, 106087 (2020).

    Article  Google Scholar 

  36. S. Sheikh, M.K. Bijaksana, A. Motallebzadeh, S. Shafeie, A. Lozinko, L. Gan, T.K. Tsao, U. Klement, D. Canadinc, H. Murakami, and S. Guo, Intermetallics 97, 58 (2018).

    Article  Google Scholar 

  37. N. Yurchenko, E. Panina, S. Zherebtsov, G. Salishchev, and N. Stepanov, Mater. 11, 2526 (2018).

    Article  Google Scholar 

  38. F. Müller, B. Gorr, H.J. Christ, J. Müller, B. Butz, H. Chen, A. Kauffmann, and M. Heilmaier, Corros. Sci. 159, 108161 (2019).

    Article  Google Scholar 

  39. S. Yang, W. Yu, T. Liu, C. Li, Y. Zhang, and Y. Qu, Mater. Res. Express. 6, 076501 (2019).

    Article  Google Scholar 

  40. J.D. Roach, J. Electrochem. Soc. 98, 160 (1951).

    Article  Google Scholar 

  41. B. Sun, X. Zuo, X. Cheng, and X. Li, npj Mater. Degrad. 4, 1 (2020).

    Google Scholar 

  42. B.G. Kim, G.M. Kim, and C.J. Kim, Scr. Metall. Mater. 33, 1117 (1995).

    Article  Google Scholar 

  43. I. Saeki, H. Konno, R. Furuichi, T. Nakamura, K. Mabuchi, and M. Itoh, Corros. Sci. 40, 191 (1998).

    Article  Google Scholar 

  44. Z.F. Li, G.M. Cao, Y.Q. He, Z.Y. Liu, and G.D. Wang, Steel. Res. Int. 87, 1469 (2016).

    Article  Google Scholar 

  45. R.C. Lobb and H.E. Evans, Corros. Sci. 23, 55 (1983).

    Article  Google Scholar 

  46. G.R. Holcomb, J. Tylczak, and C. Carney, JOM 67, 2326 (2015).

    Article  Google Scholar 

  47. Y. Zhang, H. Wu, X. Yu, and D. Tang, Corros. Sci. 200, 110211 (2022).

    Article  Google Scholar 

  48. T. Ohmi, Y. Nakagawa, M. Nakamura, A. Ohki, and T. Koyama, J. Vac. Sci. Technol. A 14, 2505 (1996).

    Article  Google Scholar 

  49. Y.Y. Liu, Z. Chen, Y.Z. Chen, J.C. Shi, Z.Y. Wang, S. Wang, and F. Liu, Vacuum 169, 108837 (2019).

    Article  Google Scholar 

  50. Z.G. Zhang, X. Teng, Y.L. Mao, C.X. Cao, S.J. Wang, and L. Wang, Oxid. Met. 73, 455 (2010).

    Article  Google Scholar 

  51. C.H. Chang, M.S. Titus, and J.W. Yeh, Adv. Eng. Mater. 20, 1700948 (2018).

    Article  Google Scholar 

  52. R. Serrazina, J.S. Dean, I.M. Reaney, L. Pereira, P.M. Vilarinho, and A.M.O.R. Senos, J. Mater. Chem. C. 7, 14334 (2019).

    Article  Google Scholar 

  53. N.L. Peterson, Int. Met. Rev. 28, 65 (2013).

    Google Scholar 

  54. C. Kaplin and M. Brochu, Appl. Surf. Sci. 301, 258 (2014).

    Article  Google Scholar 

  55. L. Liu, Z. gang Yang, C. Zhang, M. Ueda, K. Kawamura, and T. Maruyama, Corros. Sci. 91, 195 (2015).

  56. X. Wang and J.A. Szpunar, J. Alloys. Compd. 752, 40 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a seed grant from the Intelligent Systems Center of Missouri University of Science and Technology and by a research grant (award number 2207965) from the U.S. National Science Foundation. The Materials Research Center at Missouri University of Science and Technology is acknowledged for providing access to electron microscopy and X-ray diffraction. Dr. Eric Bohannan is thanked for his assistance with X-ray diffraction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiming Wen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3530 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalan, V., Crawford, S., Wu, SH. et al. Microstructure, Mechanical Properties and Oxidation Behavior of Refractory Multi-principal Element Alloys by Laser Remelting and Conventional Manufacturing. JOM 75, 5055–5065 (2023). https://doi.org/10.1007/s11837-023-06135-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06135-4

Navigation