Skip to main content
Log in

Effect of Bioceramic Reinforcement on Mechanical and Machinability Behaviour of AZ31 Magnesium Alloy Composites

  • Composite Materials for Sustainable and Eco-Friendly Material Development and Application
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Magnesium alloys are well known for their light weight and low density, which facilitates their utilization in a wide range of engineering applications. When softer magnesium alloys are reinforced with hard ceramic particles, the machinability of magnesium alloys is expected to improve. In the current work, limestone powder (LSP) was used as a bioceramic reinforcement in AZ31 magnesium alloy, and the composites were fabricated through gravity stir casting technique. LSP particles were characterized by x-ray diffraction (XRD). Magnesium composite specimens were initially subjected to tensile tests to identify the best composite configuration. Composites with 6% LSP possessed high tensile strength and only these composites were subjected to drilling analysis. Generalized regression neural network (GRNN) has been used to forecast the surface roughness of AZ31 magnesium alloy composites during drilling. Outputs of drilling operations were utilized to train the neural network model and the values predicted by the GRNN technique were ascertained using confirmation experiments. It was concluded that bioceramics improved the machinability of the magnesium alloy composites and the GRNN application towards prediction of surface roughness showed satisfactory results exhibiting less deviation from the experimental results even for any value considered within the limits of the parametric levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

No data related to this work are available/not applicable.

References

  1. R. Kuruvila, S.T. Kumaran, and M.A. Khan, Surf. Rev. Lett. 29, 2250087 (2022).

    Article  Google Scholar 

  2. Ö. Ayer, Mater. Sci. Eng. A 793, 139887 (2020).

    Article  Google Scholar 

  3. M. Ramesh, K. Marimuthu, P. Karuppuswamy, and L. Rajeshkumar, Boletín Soc. Española Cerámica Vidr. 61, 641 (2022).

    Article  Google Scholar 

  4. A. Saravanakumar, J. S Babu, A. Harikrishna, L. Rajeshkumar, and V. Sathiyamoorthy, in Technology Innovation in Mechanical Engineering, eds. by U. Chaurasiya, P.K. Singh, A. Verma, T.N. Rajak, 1st ed. (Springer, Singapore, 2022), pp. 459–468

  5. W. Wu, L. Wang, G. Huang, H. Zhang, W. Cheng, H. Wang, and K.S. Shin, Mater. Today Commun. 34, 105508 (2023).

    Article  Google Scholar 

  6. K. Shi, J. Ren, D. Zhang, Z. Zhai, and X. Huang, Int. J. Adv. Manuf. Technol. 90, 3265 (2017).

    Article  Google Scholar 

  7. M. Varatharajulu, M. Duraiselvam, M.B. Kumar, G. Jayaprakash, and N. Baskar, J. Magnes. Alloy. 10, 2857 (2022).

    Article  Google Scholar 

  8. A. Saravanakumar, L. Rajeshkumar, D. Balaji, and M. P. Jithin Karunan, Arab. J. Sci. Eng. (2020)

  9. M. Chinnasamy, R. Rathanasamy, S.K. Palaniappan, and S.K. Pal, J. Inst. Eng. Ser. D 103, 563 (2022).

    Article  Google Scholar 

  10. X. Xu, L. Wang, G. Zhu, and X. Zeng, JOM 72, 3935 (2020).

    Article  Google Scholar 

  11. S. Ding, X. Zheng, M. Wu, and Q. Yang, Sustainability 14, 7429 (2022).

    Article  Google Scholar 

  12. C. Moganapriya, R. Rajasekar, P.S. Kumar, T. Mohanraj, V.K. Gobinath, and J. Saravanakumar, Struct. Multidiscip. Optim. 63, 1169 (2021).

    Article  Google Scholar 

  13. S.A. Khan, S. Shamail, S. Anwar, A. Hussain, S. Ahmad, and M. Saleh, J. Manuf. Process. 58, 223 (2020).

    Article  Google Scholar 

  14. M. Chinnasamy, R. Rathanasamy, P. Kannayiram, S.K. Palaniappan, S.K. Pal, M. Somasundaram, and G.V. Kaliyannan, Int. J. Mater. Eng. Innov. 10, 186 (2019).

    Article  Google Scholar 

  15. R. Mahendran, P. Rajkumar, L. Nirmal Raj, S. Karthikeyan, and L. Rajeshkumar, J. Braz. Soc. Mech. Sci. Eng. 43, 378 (2021).

    Article  Google Scholar 

  16. N. Radhika, J. Sasikumar, and J. Arulmozhivarman, SILICON 12, 2769 (2020).

    Article  Google Scholar 

  17. A. Saravanakumar, L. Rajeshkumar, G. Sisindri Reddy, K. Narashima Prasad, M. Pranava Adithya, P. Suryaprakash Reddy, P. Harsha Vardhan, and P. Bala Narasimhudu, in Recent Advances in Mechanical Engineering, eds. by P. Pradhan, P. Pattanayak, B. Das, H.C. Mahanta (Springer, Singapore, 2023), pp. 389–397

  18. C. Moganapriya, R. Rajasekar, T. Mohanraj, V.K. Gobinath, P.S. Kumar, and C. Poongodi, SILICON 14, 4183 (2022).

    Article  Google Scholar 

  19. M. Varatharajulu, R. Shahithya, G. Jayaprakash, N. Baskar, and J.P. Davim, Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 235, 238 (2021).

    Article  Google Scholar 

  20. U. Koklu and H. Coban, J. Mater. Res. Technol. 9, 2870 (2020).

    Article  Google Scholar 

  21. S. C. V Lim, M. Gupta, and L. Lu, 17, 823 (2001)

  22. K.B. Nie, K.K. Deng, X.J. Wang, W.M. Gan, F.J. Xu, K. Wu, and M.Y. Zheng, J. Alloys Compd. 622, 1018 (2015).

    Article  Google Scholar 

  23. V. Bhuvaneswari, L. Rajeshkumar, and K. Nimel Sworna Ross, J. Mater. Res. Technol. 15, 2802 (2021).

    Article  Google Scholar 

  24. D. Bhuvaneswari, V. Rajeshkumar, L. Saravanakumar, and R. Balaji, Arch. Metall. Mater. 67, 1217 (2022).

    Google Scholar 

  25. O.S. Olusesi and N.E. Udoye, Manuf. Lett. 29, 34 (2021).

    Article  Google Scholar 

  26. Z. Abbas, M. Dapporto, A. Tampieri, and S. Sprio, J. Compos. Sci. 5, 259 (2021).

    Article  Google Scholar 

  27. V. Bhuvaneswari, D. Balaji, R. Jeyakumar, N. Srinivasan, and L. Rajeshkumar, Mater. Today Proc. (2023)

  28. R. Bisai, S.K. Palaniappan, S.K. Pal, and S.N. Appl, Sci. 2, 158 (2020).

    Google Scholar 

  29. N. S. Ross, M. B. J. Ananth, J. M. Jafferson, L. Rajeshkumar, and M. S. Kumar, Biomass Convers. Biorefinery (2022).

  30. S. Shchanikov, A. Zuev, I. Bordanov, S. Danilin, V. Lukoyanov, D. Korolev, A. Belov, Y. Pigareva, A. Gladkov, A. Pimashkin, A. Mikhaylov, V. Kazantsev, and A. Serb, Chaos Solitons Fractals 142, 110504 (2021).

    Article  Google Scholar 

  31. M. Mittal, L.M. Goyal, S. Kaur, I. Kaur, A. Verma, and D. Jude Hemanth, Appl. Soft Comput. 78, 346 (2019).

    Article  Google Scholar 

  32. M.G.M. Abdolrasol, S.M.S. Hussain, T.S. Ustun, M.R. Sarker, M.A. Hannan, R. Mohamed, J.A. Ali, S. Mekhilef, and A. Milad, Electronics 10, 2689 (2021).

    Article  Google Scholar 

  33. S. Arunachalam and S. Perumal, Mater. Sci. 22, (2016)

  34. C. Moganapriya, R. Rajasekar, K. Ponappa, P.S. Kumar, S.K. Pal, and J.S. Kumar, Mater. Test. 60, 1202 (2018).

    Article  Google Scholar 

  35. A.Ö. Polat and M. Avcı, Mater. Today Commun. 27, 102294 (2021).

    Article  Google Scholar 

  36. T.-C. Chen, Mater. Today Commun. 35, 105858 (2023).

    Article  Google Scholar 

  37. A. Saravanakumar, S. Dhanabal, E. Jayanand, and P. Logeshwaran, Mater. Today Proc. 5, 8131 (2018).

    Article  Google Scholar 

  38. L. Meng, B. McWilliams, W. Jarosinski, H.-Y. Park, Y.-G. Jung, J. Lee, and J. Zhang, JOM 72, 2363 (2020).

    Article  Google Scholar 

  39. C.S. Rauta, G. Majumdar, and S. Sarkar, JOM 74, 4564 (2022).

    Article  Google Scholar 

  40. R. Kumar and L. A. K. S., Part. Sci. Technol. 38, 228 (2020)

  41. R. Vaira Vignesh, R. Padmanaban, and M. Govindaraju, Bull. Mater. Sci. 43, (2020)

  42. A. J. Al-Mahasneh, S. G. Anavatti, M. A. Garratt, and M. Pratama, in 2018 IEEE Symposium Series on Computational Intelligence (IEEE, 2018), pp. 335–341.

Download references

Funding

This work does not have any funding details.

Author information

Authors and Affiliations

Authors

Contributions

All the authors equally contributed towards the experimental work and manuscript drafting and final corrections.

Corresponding author

Correspondence to L. Rajeshkumar.

Ethics declarations

Competing interest

Authors declare no conflict of interest financially or personally.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanakumar, A., Sreenivas, P., Vijayakumar, S. et al. Effect of Bioceramic Reinforcement on Mechanical and Machinability Behaviour of AZ31 Magnesium Alloy Composites. JOM 75, 5394–5404 (2023). https://doi.org/10.1007/s11837-023-06145-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06145-2

Navigation