Skip to main content
Log in

Hydrogen Embrittlement Behavior and Mechanism of Low Carbon Medium Manganese Steel Gas Metal Arc Welding Joints

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The hydrogen embrittlement behavior of two low-carbon medium manganese steel welding joints was elucidated using a slow strain rate tensile experiment, hydrogen permeation experiment, and hydrogen concentration test. The fracture starting position becomes heat-affected zone (HAZ) after hydrogen charging. The hydrogen concentration of HAZ is higher than weld material (WM) for two welding joints after hydrogen charging for both 1 h and 2 h. The hydrogen embrittlement susceptibility of the welding joint with high hydrogen concentration, which contains about 0.03 Ti in both WM and HAZ, is larger than the welding joint that does not contain Ti. When the hydrogen charging time of the Ti-contained welding joints increases from 1 h to 2 h, the fractography of WM changes from small shallow dimples (hydrogen enhanced localized plasticity) to quasi-cleavage and cleavage (hydrogen enhanced decohesion), and the fractography of HAZ changes from quasi-cleavage (hydrogen enhanced decohesion) to intergranular (hydrogen enhanced decohesion).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X.K. Jin, L. Xu, W.C. Yu, K.F. Yao, J. Shi, and M.Q. Wang, Corros. Sci. 170, 108421 (2020).

    Article  Google Scholar 

  2. L. Chen, X.L. Xiong, X. Tao, Y.J. Su, and L.J. Qiao, Corros. Sci. 166, 108428 (2020).

    Article  Google Scholar 

  3. T. Das, S.V. Brahimi, J. Song, and S. Yue, Corros. Sci. 190, 109701 (2021).

    Article  Google Scholar 

  4. X.Y. Cheng and H.X. Zhang, Corros. Sci. 174, 108800 (2020).

    Article  Google Scholar 

  5. M. Dadfarnia, P. Novak, D.C. Ahn, J.B. Liu, P. Sofronis, D.D. Johnson, and I.M. Robertson, Adv. Mater. 22, 1128 (2010).

    Article  Google Scholar 

  6. J. Song and W.A. Curtin, Acta Mater. 59, 1557 (2011).

    Article  Google Scholar 

  7. J. Song and W.A. Curtin, Nat. Mater. 12, 145 (2013).

    Article  Google Scholar 

  8. J. Song and W.A. Curtin, Acta Mater. 68, 61 (2014).

    Article  Google Scholar 

  9. R.A. Oriani and P.H. Josephic, Acta Metall. 25, 979 (1977).

    Article  Google Scholar 

  10. J.F. Lessar and W.W. Gerberich, Metall. Trans. A 7, 953 (1976).

    Article  Google Scholar 

  11. S.P. Lynch, Acta Metall. 36, 2639 (1988).

    Article  Google Scholar 

  12. Z. Tarzimoghadam, M. Rohwerder, S.V. Merzlikin, A. Bashir, L. Yedra, S. Eswara, D. Ponge, and D. Raabe, Acta Mater. 109, 69 (2016).

    Article  Google Scholar 

  13. Y. Chen, D. Haley, S.S.A. Gerstl, A.J. London, F. Sweeney, R.A. Wepf, W.M. Rainforth, P.A.J. Bagot, and M.P. Moody, Science 355, 1196 (2017).

    Article  Google Scholar 

  14. J.M. Cairney and H.Z. Lu, Science 367, 171 (2020).

    Article  Google Scholar 

  15. J. Zhao and Z. Jiang, Prog. Mater. Sci. 94, 174 (2018).

    Article  Google Scholar 

  16. D.Z. Zhang, X.H. Gao, L.X. Du, Y. Du, H. Wang, Z.G. Liu, and G.Q. Su, Mater. Sci. Eng. A 765, 138278 (2019).

    Article  Google Scholar 

  17. M.A. Mohtadi-Bonab, J.A. Szpunar, and S.S. Razavi-Tousi, Int. J. Hydrogen Energ. 38, 13831 (2013).

    Article  Google Scholar 

  18. D. Wang, X. Lu, Y. Deng, X. Guo, and A. Barnoush, Acta Mater. 166, 618 (2019).

    Article  Google Scholar 

  19. H. Liu, L.X. Du, J. Hu, H.Y. Wu, X.H. Gao, and R.D.K. Misra, J. Alloys Compd. 695, 2072 (2017).

    Article  Google Scholar 

  20. J. Hu, L.X. Du, W. Xu, J.H. Zhai, Y. Dong, Y.J. Liu, and R.D.K. Misra, Mater. Charact. 136, 20 (2018).

    Article  Google Scholar 

  21. J. Hu, L.X. Du, G.S. Sun, H. Xie, and R.D.K. Misra, Scr. Mater. 104, 87 (2015).

    Article  Google Scholar 

  22. X.Y. Qi, L.X. Du, J. Hu, and R.D.K. Misra, Mater. Sci. Eng. A 718, 471 (2018).

    Article  Google Scholar 

  23. L.Y. Lan, M. Yu, and C.L. Qiu, Mater. Sci. Eng. A 742, 442 (2019).

    Article  Google Scholar 

  24. J.L. Yang, F. Huang, Z.H. Guo, Y. Rong, and N. Chen, Mater. Sci. Eng. A 665, 76 (2016).

    Article  Google Scholar 

  25. X. Zhu, W. Li, H.S. Zhao, and X.J. Jin, Int. J. Hydrogen Energ. 38, 10694 (2013).

    Article  Google Scholar 

  26. X. Zhu, W. Li, H. Zhao, L. Wang, and X. Jin, Int. J. Hydrogen Energ. 39, 13031 (2014).

    Article  Google Scholar 

  27. A.E. Pontini and J.D. Hermida, Scripta Mater. 37, 1831 (1997).

    Article  Google Scholar 

  28. T. Michler, C. San Marchi, J. Naumann, S. Weber, and M. Martin, Int. J. Hydrogen Energ. 37, 16231 (2012).

    Article  Google Scholar 

  29. Y. Du, X.H. Gao, L.Y. Lan, X.Y. Qi, H.Y. Wu, L.X. Du, and R.D.K. Misra, Int. J. Hydrogen Energ. 44, 32292 (2019).

    Article  Google Scholar 

  30. Y. Du, X.H. Gao, Z.W. Du, L.Y. Lan, X.Y. Qi, R.D.K. Misra, H.Y. Wu, and L.X. Du, Int. J. Hydrogen Energ. 46, 8269 (2021).

    Article  Google Scholar 

  31. X.Y. Qi, L.X. Du, J. Hu, and R.D.K. Misra, Steel Res. Int. 89, 1700422 (2018).

    Article  Google Scholar 

  32. J.H. Yoo, K.T. Han, Y.H. Park, and C.H. Lee, Mater. Chem. Phys. 146, 175 (2014).

    Article  Google Scholar 

  33. T.M. Zhang, W.M. Zhao, Q.S. Deng, W. Jiang, Y.L. Wang, Y. Wang, and W.C. Jiang, Int. J. Hydrogen Energ. 42, 25102 (2017).

    Article  Google Scholar 

  34. S.J. Kim, H.G. Jung, and K.Y. Kim, Scripta Mater. 67, 895 (2012).

    Article  Google Scholar 

  35. E. López Martínez, H.J. Vergara Hernández, O. Flores, and B. Campillo, Hydrogen ISIJ Int. 55, 2435 (2015).

    Article  Google Scholar 

  36. L.Y. Lan, X.W. Kong, Z.Y. Hu, C.L. Qiu, D.W. Zhao, and L.X. Du, Corros. Sci. 112, 180 (2016).

    Article  Google Scholar 

  37. Z.H. Fu, T. Li, M.L. Shan, G.Q. Gou, Z.Y. Zhu, C.P. Ma, W. Gao, and Y.C. Hu, Corros. Sci. 148, 272 (2019).

    Article  Google Scholar 

  38. Y.H. Fan, B. Zhang, H.L. Yi, G.S. Hao, Y.Y. Sun, J.Q. Wang, E.H. Han, and W. Ke, Acta Mater. 139, 188 (2017).

    Article  Google Scholar 

  39. T. Hojo, E. Akiyama, H. Saitoh, A. Shiro, R. Yasuda, T. Shobu, J. Kinugasa, and F. Yuse, Corros. Sci. 177, 108957 (2020).

    Article  Google Scholar 

  40. H.Y. Tian, J.C. Xin, Y. Li, X. Wang, and Z.Y. Cui, Corros. Sci. 158, 108089 (2019).

    Article  Google Scholar 

  41. BS EN ISO 17081-2014.

  42. H.H. Johnson, N. Quick, and A.J. Kumnick, Scr. Metall. 13, 67 (1979).

    Article  Google Scholar 

  43. A.M. Brass, F. Guillon, and S. Vivet, Metall. Mate. Trans. A 35A, 1449 (2004).

    Article  Google Scholar 

  44. S.Z. Wang, Z.J. Gao, G.L. Wu, and X.P. Mao, Int. J. Min. Met. Mater. 29, 645 (2022).

    Article  Google Scholar 

  45. Y. Han, J. Shi, L. Xu, W.Q. Cao, and H. Dong, Mater. Des. 34, 427 (2012).

    Article  Google Scholar 

  46. C.D. Beachem, Metall. Trans. A 3, 441 (1972).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the financial support from the National Natural Science Foundation of China (No. 51975391) and the National High-tech R&D Program (863 Program) (No. 2015AA03A501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Du, X. H. Gao or X. N. Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 395 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Gao, X.H., Wang, X.N. et al. Hydrogen Embrittlement Behavior and Mechanism of Low Carbon Medium Manganese Steel Gas Metal Arc Welding Joints. JOM 75, 4407–4420 (2023). https://doi.org/10.1007/s11837-023-06064-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06064-2

Navigation